证明:若向量OA OB OC的终点A B C共线,则存在实数r p,且r+p=1,使得向量OC=r向

量OA+p向量OB,反之,也成立。... 量OA+p向量OB,反之,也成立。 展开
 我来答
百度网友e746588
2011-08-25 · TA获得超过154个赞
知道答主
回答量:20
采纳率:0%
帮助的人:27.6万
展开全部
设A、B、C三点共线,O是平面内任一点。
因为A、B、C共线,所以存在非零实数k,使
AB=kAC
即 OB-OA=k(OC-OA)
所以 OB=kOC+(1-k)OA
[注:两个系数和 k+1-k=1]

反之,若存在实数x,y 满足 x+y=1,且OA=xOB+yOC
则 OA=xOB+(1-x)OC
OA-OC=x(OB-OC)
所以 CA=xCB
因此,向量CA与CB共线,
又由于 CA、CB有公共点C
所以,A、B、C三点共线
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式