已知函数f(x)=√3/2sin2x-cos^2x-1/2,x∈R
已知函数f(x)=√3/2sin2x-cos^2x-1/2,x∈R(1)求函数f(x)的最小值和最小正周期(2)设⊿ABC的内角A、B、C的对边分别为a,b,c,且c=√...
已知函数f(x)=√3/2sin2x-cos^2x-1/2,x∈R
(1)求函数f(x)的最小值和最小正周期
(2)设⊿ABC的内角A、B、C的对边分别为a,b,c,且c=√3,f(C)=0,若b=2a,求a,b的值 展开
(1)求函数f(x)的最小值和最小正周期
(2)设⊿ABC的内角A、B、C的对边分别为a,b,c,且c=√3,f(C)=0,若b=2a,求a,b的值 展开
3个回答
展开全部
f(x)=√3/2sin2x-cos^2x-1/2
=√3/2sin2x-1/2(cos2x+1)-1/2
=√3/2sin2x-1/2cos2x-1
=sin(2x-π/3)-1
所以f(x)最小值为-2,最小正周期为2π/2=π
=√3/2sin2x-1/2(cos2x+1)-1/2
=√3/2sin2x-1/2cos2x-1
=sin(2x-π/3)-1
所以f(x)最小值为-2,最小正周期为2π/2=π
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:(1)f(x)=sin2x-cos2x-
=sin2x--
=sin2x-cos2x-1=sin(2x-)-1,
∵-1≤sin(2x-)-≤1,
∴f(x)的最小值为-2,
又ω=2,
则最小正周期是T==π;
(2)由f(C)=sin(2C-)-1=0,得到sin(2C-)=1,
∵0<C<π,∴-<2C-<,
∴2C-=,即C=,
∵sinB=2sinA,∴由正弦定理得b=2a①,又c=,
∴由余弦定理,得c2=a2+b2-2abcos,即a2+b2-ab=3②,
联立①②解得:a=1,b=2
=sin2x--
=sin2x-cos2x-1=sin(2x-)-1,
∵-1≤sin(2x-)-≤1,
∴f(x)的最小值为-2,
又ω=2,
则最小正周期是T==π;
(2)由f(C)=sin(2C-)-1=0,得到sin(2C-)=1,
∵0<C<π,∴-<2C-<,
∴2C-=,即C=,
∵sinB=2sinA,∴由正弦定理得b=2a①,又c=,
∴由余弦定理,得c2=a2+b2-2abcos,即a2+b2-ab=3②,
联立①②解得:a=1,b=2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询