求函数z=ln(x+y)在抛物线y²=4x上点(1,2)处,沿着抛物线在该点处偏向x轴正向的切线方向的方向导数
展开全部
先求切线的方向向量,曲线方程写为:f(x,y)=y²-x=0
fx=-1,fy=2y,则切线方向向量为:(-1,2y),将(1,1)代入得:(-1,2),单位化(-1/√5,2/√5)
即cosα=-1/√5,cosβ=2/√5
下面求两个偏导数
dz/dx=2x/(x²+2y),dz/dy=2/(x²+2y),将(1,1)代入得:dz/dx=2/3,dz/dy=2/3
则方向导数为:dz/dx*cosα+dz/dy*cosβ=(2/3)*(-1/√5)+(2/3)*(2/旦弗测煌爻号诧铜超扩√5)=2/(3√5)
fx=-1,fy=2y,则切线方向向量为:(-1,2y),将(1,1)代入得:(-1,2),单位化(-1/√5,2/√5)
即cosα=-1/√5,cosβ=2/√5
下面求两个偏导数
dz/dx=2x/(x²+2y),dz/dy=2/(x²+2y),将(1,1)代入得:dz/dx=2/3,dz/dy=2/3
则方向导数为:dz/dx*cosα+dz/dy*cosβ=(2/3)*(-1/√5)+(2/3)*(2/旦弗测煌爻号诧铜超扩√5)=2/(3√5)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
偏z/偏x=1/(x+y)
偏z/偏y=1/(x+y)
在点(1,2)处
偏z/偏x=偏z/偏y=1/3
对y²=4x等号两边求导:
2yy'=4
y'=2/y
当y=2时y'=1
则该点切线与x轴正向夹角为θ=π/4
因此,方向导数=(偏z/偏x)·cosθ
+
(
(偏z/偏y)·sinθ
=
√2
/3
偏z/偏y=1/(x+y)
在点(1,2)处
偏z/偏x=偏z/偏y=1/3
对y²=4x等号两边求导:
2yy'=4
y'=2/y
当y=2时y'=1
则该点切线与x轴正向夹角为θ=π/4
因此,方向导数=(偏z/偏x)·cosθ
+
(
(偏z/偏y)·sinθ
=
√2
/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询