二元一次方程组怎么解
二元一次方程组的解法一般有两种
一、代入消元法
用代入消元法的一般步骤是:
1、选一个系数比较简单的方程进行变形,变成 y = ax +b 或 x = ay + b的形式;
2、将y = ax + b 或 x = ay + b代入另一个方程,消去一个未知数,从而将另一个方程变成一元一次方程;
3、解这个一元一次方程,求出 x 或 y 值;
4、将已求出的 x 或 y 值代入方程组中的任意一个方程(y = ax +b 或 x = ay + b),求出另一个未知数;
5、把求得的两个未知数的值用大括号联立起来,这就是二元一次方程的解。
例:解方程组 :x+y=5①
6x+13y=89②
解:由①得x=5-y③
把③代入②,得6(5-y)+13y=89
得 y=59/7
把y=59/7代入③,得x=5-59/7
得x=-24/7
∴ x=-24/7,y=59/7为方程组的解。
二、加减消元法
1、在二元一次方程组中,若有同一个未知数的系数相同(或互为相反数),则可直接相减(或相加),消去一个未知数;
2、在二元一次方程组中,若不存在①中的情况,可选择一个适当的数去乘方程的两边,使其中一个未知数的系数相同(或互为相反数),再把方程两边分别相减(或相加),消去一个未知数,得到一元一次方程;
3、解这个一元一次方程;
4、将求出的一元一次方程的解代入原方程组系数比较简单的方程,求另一个未知数的值;
5、把求得的两个未知数的值用大括号联立起来,这就是二元一次方程组的解。
例:解方程组:
x+y=9①
x-y=5②
解: ①+②
得: 2x=14
∴x=7
把x=7代入①
得: 7+y=9
∴y=2
∴方程组的解是
x=7,y=2
扩展资料:
二元一次方程
1、定义
如果一个方程含有两个未知数,并且所含未知数的次数都为1,这样的整式方程叫做二元一次方程。使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
2、一般形式
ax+by+c=O(a,b≠0)。
3、求解方法
利用数的整除特性结合代入排除的方法去求解。(可利用数的尾数特性,也可利用数的奇偶性。)
2024-04-02 广告
二元一次方程组的解法!
解二元一次方程组的解法
广告 您可能关注的内容 |