跪求初一数学论文【500字】左右 急急急急急急急急急急急急急急急急急急急急急急急急急急急

文昌阁阁主123
2011-08-25 · TA获得超过6924个赞
知道大有可为答主
回答量:1711
采纳率:80%
帮助的人:436万
展开全部
课堂教学是学生在校期间学习文化科学知识的主阵地,也是对学生进行思想品德教育的主渠道。现在,学校实行五天制工作,带来了一定的压力。由于每堂课的时间的减少和每门课总学时的减少,确实给教师带来了很大的麻烦,给原来教熟了的老套路、老方法提出了挑战。对于减时不减量这一矛盾,除了对教材的内容进行重新修订调整外,对教师来说,最迫切的问题,就是如何提高四十分钟的课堂教学教育的效率,尽量在有限的时间里,出色地完成教学任务。
1 有明确的教学目标
布鲁姆在他的《教育目标分类学》一书中,将教学目标分为三大领域,即认知领域、情感领域和动作技能领域。因此,在备课时要围绕这些目标选择教学的策略、方法、媒体,进行必要的内容重组。在数学教学中,要通过师生的共同努力,使学生在知识、能力、技能、心理、思想品德等方面达到预定的目标,以提高学生的综合素质。如《复数的引入》这一课是整个复数这一章的第一课,在备课时应注意,通过这一课的教学,使学生能利用辩证唯物主义的观点来解释复数的形成和发展,体会到矛盾是事物发展的动力,矛盾的解决推动着事物的发展。引伸到现实生活中,就是当我们遇到矛盾时,也要勇于面对矛盾,要有解决矛盾的决心和信心,促进矛盾的转化和解决,同时也就提高了自己分析问题和解决问题的能力。
2 能突出重点、化解难点
每一堂课都要有一个重点,而整堂的教学都是围绕着这个重点来逐步展开的。为了让学生明确本堂课的重点、难点,教师在上课开始时,可以在黑板的一角将这些内容简短地写出来,以便引起学生的重视。讲授重点内容,是整堂课的教学高潮。教师要通过声音、手势、板书等的变化或应用模型、投影仪等直观教具,刺激学生的大脑,使学生能够兴奋起来,对所学内容在大脑中刻下强烈的印象,激发学生的学习兴趣,提高学生对新知识的接受能力。如解析几何第二章的《椭圆》第一课时,其教学的重点是掌握椭圆的定义和标准方程,难点是椭圆方程的化简。教师可从太阳、地球、人造地球卫星的运行轨道,谈到圆形台面的直观图、圆萝卜的切片、阳光下圆盘在地面上的影子等等,让学生对椭圆有一个直观的了解。为了强调椭圆的定义,教师事先准备好一根细线及两根钉子,在给出椭圆在数学上的严格定义之前,教师先在黑板上取两个定点(两定点之间的距离小于细线的长度),再让两名学生按教师的要求在黑板上画一个椭圆。画好后,教师再在黑板上取两个定点(两定点之间的距离大于细线的长度),然后再请刚才两名学生按同样的要求作图。学生通过观察两次作图的过程,总结出经验和教训,教师因势利导,让学生自己得出椭圆的严格的定义。这样,学生对这一定义就会有深刻的了解,尤其是上台板演的那两位的同学,更是终生难忘了。在进一步求轨迹方程时,学生容易得出这样一个结果:但化简却遇到了麻烦。这时教师可以适当提示:化简含有根号的式子时,我们通常有什么方法?学生回答:可以两边平方。教师问:是直接平方好呢还是恰当整理后再平方?学生通过实践,发现对于这个方程,直接平方不利于化简,而整理后再平方,最后能得到圆满的结果。这样,椭圆方程的化简这一难点也就迎刃而解了。同时也解决了将要遇到的求双曲线的标准方程时的化简问题。
3 要善于应用现代化教学手段
随着科学技术的飞速发展,三机一幕进入了寻常教室。对教师来说,掌握现代化的教学手段显得尤为重要和迫切。现代化教学手段,其显著的特点,一是能有效地增大每一堂课的课容量,从而把原来四十五分钟的内容在四十分钟中就加以解决;二是减轻教师板书的工作量,使教师能有精力讲深讲透所举例子,提高讲解效率;三是直观性强,容易激发起学生的学习兴趣,有利于提高学生的学习主动性。四是有利于对整堂课所学内容进行回顾和小结。在课临近结束时,教师引导学生总结本堂课的内容,学习的重点和难点。同时通过投影仪,同步地将内容在瞬间跃然“幕”上,使学生进一步理解和掌握本堂课的内容。在课堂教学中,对于板演量大的内容,如立体几何中的一些几何图形、一些简单但数量较多的小问答题、文字量较多应用题,复习课中章节内容的总结、选择题的训练等等都可以借助于投影仪来完成。对于有条件的学校,还可以自编电脑课件,借助电脑来生动形象地展示所教内容。如讲授正弦曲线、余弦曲线的图形、棱锥体积公式的推导过程都可以用电脑来演示。

4 根据具体内容,选择恰当的教学方法
每一堂课都有每一堂课的教学任务,目标要求。教师能随着教学内容的变化,教学对象的变化,教学设备的变化,灵活应用教学方法。数学教学的方法很多,对于新授课,我们往往采用讲授法来向学生传授新知识。而在立体几何中,我们还时常穿插演示法,来向学生展示几何模型,或者验证几何结论。如在教授立体几何之前,要求学生每人用铅丝做一个立方体的几何模型,观察其各条棱之间的相对位置关系,各条棱与正方体对角线之间、各个侧面的对角线之间所形成的角度。这样在讲授空间两条直线之间的位置关系时,就可以通过这些几何模型,直观地加以说明。此外,我们还可以结合课堂内容,灵活采用谈话、读书指导、作业、练习等多种教学方法。有时,在一堂课上,要同时使用多种教学方法。俗话说:“教无定法,贵要得法”。只要能激发学生的学习兴趣,提高学生的学习积极性,有助于学生思维能力的培养,有利于所学知识的掌握和运用,都是好的教学方法。
5 对学生在课堂上的表现,要及时加以总结,适当给予鼓励
在教学过程中,教师要随时了解学生的对所讲内容的掌握情况。如在讲完一个概念后,让学生复述;讲完一个例题后,将解答擦掉,请中等水平学生上台板演。有时,对于基础差的学生,可以对他们多提问,让他们有较多的锻炼机会,同时教师根据学生的表现,及时进行鼓励,培养他们的自信心,让他们能热爱数学,学习数学。
6 充分发挥学生为主体,教师为主导的作用,调动学生的学习积极性
学生是学习的主体,教师要围绕着学生展开教学,在教学过程中,自始至终让学生唱主角,使学生变被动学习为主动学习,让学生成为学习的主人,教师成为学习的领路人。
7 处理好课堂的偶发事件,及时调整课堂教学
尽管教师对每一堂课都作了充分的准备,但有时也可能遇到一些预料不到的事情。如一次我在讲授《复数的概念》第二课时时,有“两复数不全是实数时,不能比较大小”这一结论,但没有证明。教学计划中也没有证明的要求。在课间当带到这个问题的时,有一位成绩较好的学生要求我写出解答。我就因势利导,向学生介绍了数的大小比较的原则,并利用这一原则说明了“i>0”不能成立的原因。然后,话锋一转,对那位同学说,关于详细的证明的过程,我在课后再跟你面谈。这样,虽然增加了课时的内容,但也保护了学生的学习主动性和积极性,满足了学生的求知欲。
8 要精讲例题,多做课堂练习,腾出时间让学生多实践
根据课堂教学内容的要求,教师要精选例题,可以按照例题的难度、结构特征、思维方法等各个角度进行全面剖析,不片面追求例题的数量,而要重视例题的质量。解答过程视具体情况,可以由教师完完整整写出,也可部分写出,或者请学生写出。关键是讲解例题的时候,要能让学生也参与进去,而不是由教师一个人承包,对学生进行满堂灌。教师应腾出十来分钟时间,让学生做做练习或思考教师提出的问题,或解答学生的提问,以进一步强化本堂课的教学内容。若课堂内容相对轻松,也可以指导学生进行预习,提出适当的要求,为下一次课作准备。
百度网友81fa4e8
2011-08-25 · TA获得超过662个赞
知道答主
回答量:331
采纳率:0%
帮助的人:114万
展开全部
在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙。
例如,三角形。三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形。通过实验和研究,我们知道,三角形的内角和是180度,外角和是360度。用6个正三角形就可以铺满地面。
再来看正四边形,它可以分成2个三角形,内角和是360度,一个内角的度数是90度,外角和是360度。用4个正四边形就可以铺满地面。
正五边形呢?它可以分成3个三角形,内角和是540度,一个内角的度数是108度,外角和是360度。它不能铺满地面。
六边形,它可以分成4个三角形,内角和是720度,一个内角的度数是120度,外角和是360度。用3个正四边形就可以铺满地面。
七边形,它可以分成5个三角形,内角和是900度,一个内角的度数是900/7度,外角和是360度。它不能铺满地面。
由此,我们得出了。n边形,可以分成(n-2)个三角形,内角和是(n-2)*180度,一个内角的度数是(n-2)*180÷2度,外角和是360度。若(n-2)*180÷2能整除360,那么就能用它来铺满地面,若不能,则不能用其铺满地面。
我们不但可以用一种正多边形铺满地面,我们还可以用两种、三种等更多的图形组合起来铺满地面。
例如:正三角形和正方形、正三角形和六方形、正方形和正八边形、正五边形和正八边形、正三角形和正方形和正六边形……
现实生活中,我们已经看到了用正多边形拼成的各种图案,实际上,有许多图案往往是用不规则的基本图形拼成的。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
阿越来也
2011-08-25
知道答主
回答量:12
采纳率:0%
帮助的人:13万
展开全部
初一谢数学论文? 去骂你们老师去 你们老师脑子是不是被肛门夹过 还是自己懒的写叫铜血写。。。。。还是不要写了 写了对你也没屌用。。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
mao20020119
2011-08-30
知道答主
回答量:7
采纳率:0%
帮助的人:3.9万
展开全部
关于“0” (供你参考)

0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”
“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。

“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示……

爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
生活中的数学
有一个谜语:有一样东西,看不见、摸不着,但它却无处不在,请问它是什么?谜底是:空气。而数学,也像空气一样,看不见,摸不着,但它却时时刻刻存在于我们身边。

.........................................................

生活中的数学

摘要:本文通过对生活中商品促销的实例分析,得出数学其实与我们的生活息息相关,数学在现实生活中无处不在的结论。
关键词:数学;生活;促销
“对我来说什么都可以变成数学。”数学家笛卡儿曾这样说过。“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。”我国家喻户晓的数学家华罗庚也曾下过这样的结论。的确,正如两位前辈所说,数学与我们的生活息息相关,数学的脚步无处不在。
2006年已经接近尾声了,迎面而来的是新的一年——2007年。行走在繁华的大街上,随处可见商家打出的“满400送400”,“满300送300”的促销招牌。“这真实惠!”消费者们蜂拥而至,商场里人山人海,抢购成风。此情此景,真让人以为回到了物资短缺的年代。实际上商家心里早打好了如意算盘。俗话说:只有买亏,没有卖亏,“满400送400元券”只是商家的一种促销手段,其中暗藏着数学问题,暗藏着商业机密,暗藏着许多玄机。
去年,我们一家三口,也在新年之际在商场里“血拼”,当时是满400送400元券。我们先用980元买了一件苹果牌的皮夹克给爸爸,送来了800元购物券。我们并没有过分浪费,花了298元券买了一件藏青色的李宁牌棉袄,又用剩下的500元券中的488买了一件太子龙男装(由于是购物券,不设找零)。到底便宜了多少?298+488+980=1766(元)——这是原来不打折时需要花的钱。980/1776,所打的折扣大约是五五折。
我的姑姑和姑夫从前也做过服装生意,我对服装的进货成本与销售价的关系也有些了解。服装的进价一般只占建议零售价的20%~30%。随着竞争的加剧和商场促销力度越来越大,为了保持利润,商家或厂家还不断地把衣服的建议零售价标高。就如前几天在电视中看见的一位消费者所说,某一品牌同一款式的一条尼料的裤子,三年前建议零售价还只是299元,今年标价变成了999元。这么一算,进价大概只有商场里售价的10%~20%。就算打了五五折,商家还稳赚三至五成的毛利。
广告,广告,便是广而告之。许多人一窝蜂似的赶来抢购、血拼,商场的人流量多了,商品销售量也快速增长。就按人流量是平时的三倍算,这里又出现了一个数学问题。假设平时人流量少时,一件商品按8折销售。8折减去进价2折,标价部分的6成就成了毛利。虽然现在“满400送400元券”时同一件商品可能只赚三至五成,但销量起码是平时的三倍以上。就按三成毛利和三倍销量来计算,3×3=9,与平时的6成毛利相比,一天能多赚50%。虽说这样卖每件单位毛利率有所下降,毛利额却因销售量的增加而增长,更因大量销售而加快了资金周转,带来额外的收益。
商品标价和促销中有数学,购物消费中有数学,装修房子有数学,织毛衣中有数学……总而言之,数学在现实生活中无处不在!

回答:2009-07-08 22:41
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式