抛物线过(1,8),顶点在x轴上,对称轴平行于y,且经直线y=-2x和y=-2/x的一个交点,求解析式
3个回答
展开全部
联立y=-2x和y=-2/x得,交点坐标为(1,-2)或(-1,2)
设抛物线方程为y=ax^2+bx+c,将(1,8),(1,-2)或(1,8),(-1,2)分别代入得
无解或a+b+c=8,a-b+c=-2,解得b=3,a+c=5
因为抛物线顶点在x轴上,则b^2-4ac=0,即9-4ac=0,得ac=9/4
a、c为方程x^2-3x+25/4的根,解得a=9/2,c=1/2或a=1/2,c=9/2
所以解析式为y=9x^2/2+3x+1/2或y=x^2/2+3x+9/2
设抛物线方程为y=ax^2+bx+c,将(1,8),(1,-2)或(1,8),(-1,2)分别代入得
无解或a+b+c=8,a-b+c=-2,解得b=3,a+c=5
因为抛物线顶点在x轴上,则b^2-4ac=0,即9-4ac=0,得ac=9/4
a、c为方程x^2-3x+25/4的根,解得a=9/2,c=1/2或a=1/2,c=9/2
所以解析式为y=9x^2/2+3x+1/2或y=x^2/2+3x+9/2
展开全部
由题意可知;因为经过直线y=-2x和y=-2/x的一个交点,经过计算肯定是经过(-1,2)而不是经过(1,-2),然后又公式的得b=3,a=9/2,c=1/2或者b=3,a=1/2,c=9/2,综上的9/2x^2+3x
+1/2=y,或1/2x^2+3x+9/2=y
+1/2=y,或1/2x^2+3x+9/2=y
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
抛物线顶点在x轴上,对称轴平行于轴,方程可写为
y=a(x+m)^2 (a≠0)
点(1,8)在抛物线上则,8=a(1+m)^2 (1)
直线y=-2x和y=-2/x的交点有二个:A(1,-2)B(-1,2)
如果抛物线不会经过A点,因为(1,8)和(1,-2)这两点之间的直线平行于y轴。那么抛物线
经过B点,则
2=a(-1+m)^2 (2)
(1)/(2)
4=(1+m)^2/(m-1)^2
4m^2-8m+4=1+2m+m^2
3m^2-10m+3=0
(3m-1)(m-3)=0
m1=1/3 m2=3
当m=1/3时,a=9/2
当m=3时,a=1/2
所求的抛物线是 y=9/2(x+1/3)^2 或 y=1/2(x+3)^2
y=a(x+m)^2 (a≠0)
点(1,8)在抛物线上则,8=a(1+m)^2 (1)
直线y=-2x和y=-2/x的交点有二个:A(1,-2)B(-1,2)
如果抛物线不会经过A点,因为(1,8)和(1,-2)这两点之间的直线平行于y轴。那么抛物线
经过B点,则
2=a(-1+m)^2 (2)
(1)/(2)
4=(1+m)^2/(m-1)^2
4m^2-8m+4=1+2m+m^2
3m^2-10m+3=0
(3m-1)(m-3)=0
m1=1/3 m2=3
当m=1/3时,a=9/2
当m=3时,a=1/2
所求的抛物线是 y=9/2(x+1/3)^2 或 y=1/2(x+3)^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询