展开全部
解:
Sn=1×(1/2)+2×(1/4)+3×(1/8)+...+n(1/2ⁿ)
=1/2+2/2²+3/2³+...+n/2ⁿ
Sn/2=1/2²+2/2³+...+(n-1)/2ⁿ+n/2^(n+1)
Sn-Sn/2=Sn/2=1/2+1/2²+1/2³+...+n/2ⁿ-n/2^(n+1)
=(1/2)(1-1/2ⁿ)/(1-1/2)-n/2^(n+1)
=1-1/2ⁿ-n/2^(n+1)
Sn=2-2/2ⁿ-n/2ⁿ=2-(n+2)/2ⁿ
Sn=1×(1/2)+2×(1/4)+3×(1/8)+...+n(1/2ⁿ)
=1/2+2/2²+3/2³+...+n/2ⁿ
Sn/2=1/2²+2/2³+...+(n-1)/2ⁿ+n/2^(n+1)
Sn-Sn/2=Sn/2=1/2+1/2²+1/2³+...+n/2ⁿ-n/2^(n+1)
=(1/2)(1-1/2ⁿ)/(1-1/2)-n/2^(n+1)
=1-1/2ⁿ-n/2^(n+1)
Sn=2-2/2ⁿ-n/2ⁿ=2-(n+2)/2ⁿ
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询