y=[1+sinx]/[2+cosx]的最大值与最小值的解题过程
展开全部
step1:数形结合,划出平面直角坐标系,将(cos x,sin x)当做以(0, 0)为心的单位圆上的任何一点。
step2:找出点(-2,-1)
step3:圆上任意一点(cos x,sin x)与(-2,-1)的相连,该线段所在直线的斜率可表示为k=[sinx+1]/[cosx+2],即为原式的y
step4:改变圆上点的位置,可以观察到斜率的变化即为y的变化。可以看出(-2,-1)与单位圆的两个切点处即为两个极值。
step5:很明显斜率最小时线段平行x轴,与圆(0,-1)相切,斜率值为0;最大值可利用切点与圆心的连线与切线互相垂直而列出方程求解,过程略。
step2:找出点(-2,-1)
step3:圆上任意一点(cos x,sin x)与(-2,-1)的相连,该线段所在直线的斜率可表示为k=[sinx+1]/[cosx+2],即为原式的y
step4:改变圆上点的位置,可以观察到斜率的变化即为y的变化。可以看出(-2,-1)与单位圆的两个切点处即为两个极值。
step5:很明显斜率最小时线段平行x轴,与圆(0,-1)相切,斜率值为0;最大值可利用切点与圆心的连线与切线互相垂直而列出方程求解,过程略。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询