1*2*3+2*3*4+3*4*5+....+n*(n+1)*(n+2),怎么求和的,我想知道详细过程。
展开全部
先知道几个公式
(a + b) * (a - b) = a^2 - b^2 ……(1)
1 + 2 + …… + n = n(n+1)/2 …… (2)
1^3 + 2^3 + …… n^3 = [n (n+1) / 2]^2 ……(3)
先用(1)把k(k+1)(k+2)看作是(k+1) * (k+1 -1) * (k+1 +1)=(k+1) * [(k+1)^2 -1]=(k+1)^3 - (k+1)
反复运用 再把立方项放一块 就得到
上式 = 2^3 + 3^3 + ... + (n+1)^3 - [2 + 3 + ... (n+1)]
对立方项的部分加1^3 对后边的[2 + 3 + ... (n+1)]也加1
显然值是不变的
上式 = 1^3 + 2^3 +... + (n+1)^3 - [1 + 2 + ... (n+1)]
用公式(2)(3)
上式 = [(n+1)(n+2)/2]^2 - (n+1)(n+2)/2
提取公因子(n+1)(n+2)/4
上式 = (n+1)(n+2)/4 * [(n+1)(n+2) - 2]
= (n+1)(n+2)/4 * [n(n+3)]
= n(n+1)(n+2)(n+3)/4
(a + b) * (a - b) = a^2 - b^2 ……(1)
1 + 2 + …… + n = n(n+1)/2 …… (2)
1^3 + 2^3 + …… n^3 = [n (n+1) / 2]^2 ……(3)
先用(1)把k(k+1)(k+2)看作是(k+1) * (k+1 -1) * (k+1 +1)=(k+1) * [(k+1)^2 -1]=(k+1)^3 - (k+1)
反复运用 再把立方项放一块 就得到
上式 = 2^3 + 3^3 + ... + (n+1)^3 - [2 + 3 + ... (n+1)]
对立方项的部分加1^3 对后边的[2 + 3 + ... (n+1)]也加1
显然值是不变的
上式 = 1^3 + 2^3 +... + (n+1)^3 - [1 + 2 + ... (n+1)]
用公式(2)(3)
上式 = [(n+1)(n+2)/2]^2 - (n+1)(n+2)/2
提取公因子(n+1)(n+2)/4
上式 = (n+1)(n+2)/4 * [(n+1)(n+2) - 2]
= (n+1)(n+2)/4 * [n(n+3)]
= n(n+1)(n+2)(n+3)/4
追问
这个有些啰嗦 文字太多,我人懒,可以直接点的么
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询