求微分方程y''=1+y'²的通解
1个回答
展开全部
用降阶法:
设y'=p
y''=dp/dx=dp/dy.dy/dx=y'dp/dy=pdp/dy
pdp/dy=1+p²
pdp/(1+p²)=dy
(1/2)d(1+p²)/(1+p²)=dy
(1/2)ln(1+p²)=y+C1
ln(1+p²)=2y+2C1
1+p²=C2e^(2y)
p²=C2e^(2y)-1
p=±√[C2e^(2y)-1]
dy/√[C2e^(2y)-1]=±dx
设e^y=t,y=lnt,dy=dt/t
代入:
dt/t(C2t²-1)=±dx
dt/t(t²-1/C2)=±C2dx
1/t(t²-1/C2)=a/t+b/(t+1/√C2)+c/(t-1/√C2)
=[a(t²-1/C2)+bt(t-1/√C2)+ct(t+1/√C2)]/t(t²-1/C2)
=[(a+b+c)t²+(c/√C2-b/√C2)t-a/C2]/t(t²-1/C2)
a+b+c=0
b=c
-a/C2=1
a=-C2
b+c=C2
b=c=C2/2
1/t(t²-1/C2)=-C2/t+(C2/2)/(t+1/√C2)+(C2/2)/(t-1/√C2)
[-C2/t+(C2/2)/(t+1/√C2)+(C2/2)/(t-1/√C2)]dt=±C2dx
[-1/t+(1/2)/(t+1/√C2)+(1/2)/(t-1/√C2)]dt=±dx
两边积分:
-lnt+(1/2)ln(t+1/√C2)+(1/2)ln(t-1/√C2)=±x+C3
-lnt+(1/2)ln(t²-1/C2)=±x+C3
ln[√(t²-1/C2)/t]=±x+C3
√(t²-1/C2)/t=C4e^(±x)
√(t²-1/C2)=C4te^(±x)
t²-1/C2=C4²t²e^(±2x)
t²(1-C4²e^(±2x))=1/C2
t²=1/C2(1-C4²e^(±2x))
e^(2y)=1/C2(1-C4²e^(±2x))
2y=-ln[C2(1-C4²e^(±2x))]
y=-(1/2)ln[C2(1-C4²e^(±2x))]
=-(1/2)[lnC2+ln(1-C4²e^(±2x))]
y=D1-(1/2)ln(1-D2e^(±2x))
其中D1、D2是常数。
设y'=p
y''=dp/dx=dp/dy.dy/dx=y'dp/dy=pdp/dy
pdp/dy=1+p²
pdp/(1+p²)=dy
(1/2)d(1+p²)/(1+p²)=dy
(1/2)ln(1+p²)=y+C1
ln(1+p²)=2y+2C1
1+p²=C2e^(2y)
p²=C2e^(2y)-1
p=±√[C2e^(2y)-1]
dy/√[C2e^(2y)-1]=±dx
设e^y=t,y=lnt,dy=dt/t
代入:
dt/t(C2t²-1)=±dx
dt/t(t²-1/C2)=±C2dx
1/t(t²-1/C2)=a/t+b/(t+1/√C2)+c/(t-1/√C2)
=[a(t²-1/C2)+bt(t-1/√C2)+ct(t+1/√C2)]/t(t²-1/C2)
=[(a+b+c)t²+(c/√C2-b/√C2)t-a/C2]/t(t²-1/C2)
a+b+c=0
b=c
-a/C2=1
a=-C2
b+c=C2
b=c=C2/2
1/t(t²-1/C2)=-C2/t+(C2/2)/(t+1/√C2)+(C2/2)/(t-1/√C2)
[-C2/t+(C2/2)/(t+1/√C2)+(C2/2)/(t-1/√C2)]dt=±C2dx
[-1/t+(1/2)/(t+1/√C2)+(1/2)/(t-1/√C2)]dt=±dx
两边积分:
-lnt+(1/2)ln(t+1/√C2)+(1/2)ln(t-1/√C2)=±x+C3
-lnt+(1/2)ln(t²-1/C2)=±x+C3
ln[√(t²-1/C2)/t]=±x+C3
√(t²-1/C2)/t=C4e^(±x)
√(t²-1/C2)=C4te^(±x)
t²-1/C2=C4²t²e^(±2x)
t²(1-C4²e^(±2x))=1/C2
t²=1/C2(1-C4²e^(±2x))
e^(2y)=1/C2(1-C4²e^(±2x))
2y=-ln[C2(1-C4²e^(±2x))]
y=-(1/2)ln[C2(1-C4²e^(±2x))]
=-(1/2)[lnC2+ln(1-C4²e^(±2x))]
y=D1-(1/2)ln(1-D2e^(±2x))
其中D1、D2是常数。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询