2个回答
展开全部
解:
S1 = a1 = -a1 - (1/2)^0 + 2,a1 = 1/2
Sn = -an - (1/2)^(n-1) + 2
S(n-1)=-a(n-1)-(1/2)^(n-2)+2
相减:
an = a(n-1)-an + (1/2)^(n-1)
∴an = a(n-1)/2 + (1/2)^n
上式是包含a(n-1)的递推式
an =(1/2)^n + [a(n-2)/2+(1/2)^(n-1)]/2
=2*(1/2)^n + a(n-2)/4
=3*(1/2)^n + a(n-3)/8
=.........
=(n-1)*(1/2)^n + a1/2^(n-1)
=n/(2^n)
bn = 2^n * an = 2^n * n/(2^n) = n
b(n-1) = n-1
即:bn - b(n-1) = 1
所以bn是首项为1公差为1的等差数列
S1 = a1 = -a1 - (1/2)^0 + 2,a1 = 1/2
Sn = -an - (1/2)^(n-1) + 2
S(n-1)=-a(n-1)-(1/2)^(n-2)+2
相减:
an = a(n-1)-an + (1/2)^(n-1)
∴an = a(n-1)/2 + (1/2)^n
上式是包含a(n-1)的递推式
an =(1/2)^n + [a(n-2)/2+(1/2)^(n-1)]/2
=2*(1/2)^n + a(n-2)/4
=3*(1/2)^n + a(n-3)/8
=.........
=(n-1)*(1/2)^n + a1/2^(n-1)
=n/(2^n)
bn = 2^n * an = 2^n * n/(2^n) = n
b(n-1) = n-1
即:bn - b(n-1) = 1
所以bn是首项为1公差为1的等差数列
展开全部
Sn = -an + 2 - 2^(1-n)
S(n+1) = -a(n+1) + 2 - 2^(-n)
a(n+1)= -a(n+1) + an - 2^(-n) + 2^(1-n)
2a(n+1) = an + 2^(-n)
两边同乘以2的n次方
得到2^(n+1)·a(n+1) - 2^n·an = b(n+1) - bn = 1
S1 = a1 = -a1 +1 得 a1 = 0.5
b1 = 2a1 =1
bn = n = 2^n·an 得 an = 2^(-n)
S(n+1) = -a(n+1) + 2 - 2^(-n)
a(n+1)= -a(n+1) + an - 2^(-n) + 2^(1-n)
2a(n+1) = an + 2^(-n)
两边同乘以2的n次方
得到2^(n+1)·a(n+1) - 2^n·an = b(n+1) - bn = 1
S1 = a1 = -a1 +1 得 a1 = 0.5
b1 = 2a1 =1
bn = n = 2^n·an 得 an = 2^(-n)
追问
an=n/(2^n)
追答
呃 是我疏忽了 不好意思
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询