世界上最难的数学题是什么?答案又是什么?
1个回答
展开全部
据说是这个:
最难的数学题是证明题“哥德巴赫猜想凯派”.
哥德巴赫猜想(Goldbach Conjecture)大致可以分为两个猜想(前者称"强"或"二重哥德巴赫猜想灶州,后者称"弱"或"三重哥德巴赫猜想):1.每个不小于6的偶数都可以表示为两个奇素数之和;2.每个不小于9的奇数都可以表示为三个奇素数之和.考虑把偶数表示为两数之和,而每一个数又是若干素数之积.如果把命题"每一个大偶数可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"盯辩贺记作"a+b".1966年,陈景润证明了"1+2",即"任何一个大偶数都可表示成一个素数与另一个素因子不超过2个的数之和".离猜想成立即"1+1"仅一步之遥.
最难的数学题是证明题“哥德巴赫猜想凯派”.
哥德巴赫猜想(Goldbach Conjecture)大致可以分为两个猜想(前者称"强"或"二重哥德巴赫猜想灶州,后者称"弱"或"三重哥德巴赫猜想):1.每个不小于6的偶数都可以表示为两个奇素数之和;2.每个不小于9的奇数都可以表示为三个奇素数之和.考虑把偶数表示为两数之和,而每一个数又是若干素数之积.如果把命题"每一个大偶数可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"盯辩贺记作"a+b".1966年,陈景润证明了"1+2",即"任何一个大偶数都可表示成一个素数与另一个素因子不超过2个的数之和".离猜想成立即"1+1"仅一步之遥.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |