lim(x→0)(e的x²次方+2cos x-3)/x的四次方 用泰勒公式求极限,要过程,谢谢了
1个回答
展开全部
lim(x→0)(e^x^2+2cos x-3)/x^4 (0/0)
=lim(x→0)(2xe^x^2-2sinx)/(4x^3) (0/0)
=lim(x→0)(2e^x^2+4x^2e^x^2-2cosx)/(12x^2) (0/0)
=lim(x→0)(10xe^x^2+8x^3e^x^2+2sinx)/(24x)
=lim(x→0)(10xe^x^2+8x^3e^x^2)/(24x) +lim(x→0)2sinx/(24x)
=lim(x→0)(10e^x^2+8x^2e^x^2)/(24) +1/12
=5/12+1/12
=1/2
=lim(x→0)(2xe^x^2-2sinx)/(4x^3) (0/0)
=lim(x→0)(2e^x^2+4x^2e^x^2-2cosx)/(12x^2) (0/0)
=lim(x→0)(10xe^x^2+8x^3e^x^2+2sinx)/(24x)
=lim(x→0)(10xe^x^2+8x^3e^x^2)/(24x) +lim(x→0)2sinx/(24x)
=lim(x→0)(10e^x^2+8x^2e^x^2)/(24) +1/12
=5/12+1/12
=1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询