已知函数f(x)=(x+a)\(x^2+b)是定义在R上的奇函数,其值域为[-1\4,1\4]
(1)试求a,b的值(2)函数y=g(x)(x属于R)满足(1)当x属于[0,3)时,g(x)=f(x);(2)g(x+3)=g(x)lnm(m不等于1)求函数g(x)在...
(1)试求a,b的值
(2)函数y=g(x)(x属于R)满足(1)当x属于[0,3)时,g(x)=f(x);(2)g(x+3)=g(x)lnm (m不等于1)
求函数g(x)在x属于[3,9)上的解析式。
若g(x)在x属于[0,正无穷)上的值域是闭区间,试探求m的取值范围,并说明理由 展开
(2)函数y=g(x)(x属于R)满足(1)当x属于[0,3)时,g(x)=f(x);(2)g(x+3)=g(x)lnm (m不等于1)
求函数g(x)在x属于[3,9)上的解析式。
若g(x)在x属于[0,正无穷)上的值域是闭区间,试探求m的取值范围,并说明理由 展开
展开全部
解:
f(x)=-f(-x)
(x+a)\(x^2+b)=(x-a)\(x^2+b)
a =0
另y = f(x)
yx^2+yb-x=0
△≥0
y^2≤1/4b
而y∈[-1/4,1/4]
b=1/4
(2)
∵g(x+3)=g(x)lnm
∴g(x)=g(x-3)lnm
当x∈[0,3)时,g(x)=f(x)=x/(x^2+1/4)
令x属于[3,6),x-3∈[3,6)
g(x)=g(x-3)lnm=f(x-3)lnm
=(x-3)/[(x-3)^2+1/4]lnm
令x属于[6,9),x-3∈[3,6)
g(x)=g(x-3)lnm=
(x-3)/[(x-6)^2+1/4]lnm
所以:
g(x)=
(x-3)/[(x-3)^2+1/4]lnm x∈[3,6)
(x-6)/[(x-6)^2+1/4]lnm x∈[6,9)
根据以上可知,当x属于[0,正无穷)
g(x)的函数可以表示成:
g(x)=
(x-n)/[(x-n)^2+1/4]lnm 其中n为常数,当x属于[0,3)时,m=e
令y=g(x),则:
y[(x-n)^2+1/4]lnm = x-n
yx^2+yn^2-2nxy+y/4-xlnm+nlnm=0
△≥0
(2ny+lnm)^2 -4y(yn^2+y/4+nlnm)≥0
y^2≥(lnm)^2
因为y的取值为闭区间,
∴lnm ≠ 0 ,m ≠ 1
即m∈(0,1)U(1,正无穷)
f(x)=-f(-x)
(x+a)\(x^2+b)=(x-a)\(x^2+b)
a =0
另y = f(x)
yx^2+yb-x=0
△≥0
y^2≤1/4b
而y∈[-1/4,1/4]
b=1/4
(2)
∵g(x+3)=g(x)lnm
∴g(x)=g(x-3)lnm
当x∈[0,3)时,g(x)=f(x)=x/(x^2+1/4)
令x属于[3,6),x-3∈[3,6)
g(x)=g(x-3)lnm=f(x-3)lnm
=(x-3)/[(x-3)^2+1/4]lnm
令x属于[6,9),x-3∈[3,6)
g(x)=g(x-3)lnm=
(x-3)/[(x-6)^2+1/4]lnm
所以:
g(x)=
(x-3)/[(x-3)^2+1/4]lnm x∈[3,6)
(x-6)/[(x-6)^2+1/4]lnm x∈[6,9)
根据以上可知,当x属于[0,正无穷)
g(x)的函数可以表示成:
g(x)=
(x-n)/[(x-n)^2+1/4]lnm 其中n为常数,当x属于[0,3)时,m=e
令y=g(x),则:
y[(x-n)^2+1/4]lnm = x-n
yx^2+yn^2-2nxy+y/4-xlnm+nlnm=0
△≥0
(2ny+lnm)^2 -4y(yn^2+y/4+nlnm)≥0
y^2≥(lnm)^2
因为y的取值为闭区间,
∴lnm ≠ 0 ,m ≠ 1
即m∈(0,1)U(1,正无穷)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询