二阶偏导数的公式详解是什么?

 我来答
摩羯小鱼儿1127
2021-04-08 · TA获得超过8170个赞
知道答主
回答量:263
采纳率:100%
帮助的人:4万
展开全部

u = abcxyz

∂u/∂x = abcyz

∂u/∂y = abcxz

∂u/∂z = abcxy

举个例子:设z=f(x+y2,3x-2y),f具有二阶连续偏导数,求az/ax,a2z/axay解:az/ax=f1+3f2a2z/axay=(f11*2y-2f12)+3(f21.2y-2f22)如果f1是z对第一个中间变量u的偏导数az/au*au/ax,那么f1...设z=f(x+y2,3x-2y),f具有二阶连续偏导数,求az/ax,a2z/axay

扩展资料:

求二阶偏导数的方法:

当函数 z=f(x,y) 在 (x0,y0)的两个偏导数 f'x(x0,y0) 与 f'y(x0,y0)都存在时,我们称 f(x,y) 在 (x0,y0)处可导。如果函数 f(x,y) 在域 D 的每一点均可导,那么称函数 f(x,y) 在域 D 可导。

此时,对应于域 D 的每一点 (x,y) ,必有一个对 x (对 y )的偏导数,因而在域 D 确定了一个新的二元函数,称为 f(x,y) 对 x (对 y )的偏导函数。简称偏导数。

按偏导数的定义,将多元函数关于一个自变量求偏导数时,就将其余的自变量看成常数,此时他的求导方法与一元函数导数的求法是一样的。

设有二元函数 z=f(x,y) ,点(x0,y0)是其定义域D 内一点。把 y 固定在 y0而让 x 在 x0 有增量 △x ,相应地函数 z=f(x,y) 有增量(称为对 x 的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。

如果 △z 与 △x 之比当 △x→0 时的极限存在,那么此极限值称为函数 z=f(x,y) 在 (x0,y0)处对 x 的偏导数,记作 f'x(x0,y0)或函数 z=f(x,y) 在(x0,y0)处对 x 的偏导数。

把 y 固定在 y0看成常数后,一元函数z=f(x,y0)在 x0处的导数。同样,把 x 固定在 x0,让 y 有增量 △y ,如果极限存在那么此极限称为函数 z=(x,y) 在 (x0,y0)处对 y 的偏导数。记作f'y(x0,y0)。

北京埃德思远电气技术咨询有限公司
2021-11-22 广告
对二阶导数先求一次不定积分,得出原函数可能的一阶导数,再对一阶导数再求一次不定积分即可得出原函数。例如二阶导数为ax+b,先对该二阶导数求一次不定积分得出其一阶导数为ax^2+bx+c再对一阶导数求一次不定积分得出其原函数为ax^3+bx^... 点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
zwbylx88

2021-04-06 · TA获得超过3233个赞
知道小有建树答主
回答量:209
采纳率:50%
帮助的人:3.8万
展开全部

当函数z=f(x,y)在(x0,y0)的两个偏导数f'x(x0,y0)与f'y(x0,y0)都存在时,我们称f(x,y)在(x0,y0)处可导。如果函数f(x,y)在域D的每一点均可导,那么称函数f(x,y)在域D可导。

此时,对应于域D的每一点(x,y),必有一个对x(对y)的偏导数,因而在域D确定了一个新的二元函数,称为f(x,y)对x(对y)的偏导函数,简称偏导数。

扩展资料

性质

1、如果一个函数f(x)在某个区间I上有f''(x)(即二阶导数)>0恒成立,那么对于区间I上的任意x,y,总有:f(x)+f(y)≥2f[(x+y)/2],如果总有f''(x)<0成立,那么上式的不等号反向。

2、判断函数极大值以及极小值。

结合一阶、二阶导数可以求函数的极值。当一阶导数等于0,而二阶导数大于0时,为极小值点。当一阶导数等于0,而二阶导数小于0时,为极大值点;当一阶导数和二阶导数都等于0时,为驻点。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式