化简:4. 化简:(2cos²α-1)/{[2tan((π/4)- α)]}*{cos³[(π/4)- α]}

百度网友1d056ce
2011-08-27 · TA获得超过1.3万个赞
知道大有可为答主
回答量:1591
采纳率:0%
帮助的人:3458万
展开全部
由于:
cos^3[π/4-a]
=[cos(π/4-a)]^3
=[cos(π/4)cosa+sin(π/4)sina]^3
=[(√2/2)cosa+(√2/2)sina]^3
=(√2/4)(cosa+sina)^3

tan[(π/4)- a]
=[tan(π/4)-tana]/[1+tan(π/4)tana]
=[1-tana]/[1+tana]
=[cosa-sina]/[cosa+sina]

所以原式
=[2cos^2(a)-1]/{[(2cosa-2sina)/(sina+cosa)]*(√2/4)(cosa+sina)^3}
=[2cos^2(a)-1]/[(√2/2)(cosa-sina)(cosa+sina)^2]
=(√2)[2cos^2(a)-1]/[(cosa-sina)(sina+cosa)(sina+cosa)]
=[√2cos2a]/[(cos^2(a)-sin^2(a))(sina+cosa)]
=[√2cos2a]/[cos2a(sina+cosa)]
=√2/(sina+cosa)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式