证明:对于任意的正整数n,有1/1*2*3+1/2*3*4+......+1/n(n+1)(n+2)<1/4
3个回答
展开全部
证明:设数列{an},an=1/n(n+1)(n+2),
则an=1/2{[1/n-1/(n+1)]-[(1/n+1)-1/(n+2)]},
得1/1*2*3+1/2*3*4+......+1/n(n+1)(n+2)
=a1+a2+……+an
=1/2[(1-1/2)-(1/2-1/3)]+1/2[(1/2-1/3)-(1/3-1/4)]+……+1/2{[1/n-1/(n+1)]-[(1/n+1)-1/(n+2)]}
=1/2(1-1/2)-1/2[(1/n+1)-1/(n+2)]
=1/4-1/2[(1/n+1)-1/(n+2)]
由于n+1<n+2,即1/2[(1/n+1)-1/(n+2)]>0,则
1/1*2*3+1/2*3*4+......+1/n(n+1)(n+2)=1/4-1/2[(1/n+1)-1/(n+2)]<1/4
则an=1/2{[1/n-1/(n+1)]-[(1/n+1)-1/(n+2)]},
得1/1*2*3+1/2*3*4+......+1/n(n+1)(n+2)
=a1+a2+……+an
=1/2[(1-1/2)-(1/2-1/3)]+1/2[(1/2-1/3)-(1/3-1/4)]+……+1/2{[1/n-1/(n+1)]-[(1/n+1)-1/(n+2)]}
=1/2(1-1/2)-1/2[(1/n+1)-1/(n+2)]
=1/4-1/2[(1/n+1)-1/(n+2)]
由于n+1<n+2,即1/2[(1/n+1)-1/(n+2)]>0,则
1/1*2*3+1/2*3*4+......+1/n(n+1)(n+2)=1/4-1/2[(1/n+1)-1/(n+2)]<1/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询