在等差数列{an}中,已知a1=1,前n项和Sn满足条件S2n/Sn=4,n=1,2,…
(1)求数列{an}的通项公式及Sn(2)记bn=an×2^(n-1),求数列{bn}的前n项和Tn...
(1)求数列{an}的通项公式及Sn
(2)记bn=an×2^(n-1),求数列{bn}的前n项和Tn 展开
(2)记bn=an×2^(n-1),求数列{bn}的前n项和Tn 展开
1个回答
展开全部
解:1) 设等差为d,则an=1+(n-1)d,
Sn=(a1+an)n/2=n[2+(n-1)d]/2,
S2n=n[2+(2n-1)d],
则n[2+(2n-1)d]=4n[2+(n-1)d]/2,
解得d=2,则an=1+2(n-1)=2n-1,
Sn=n^2
2) bn=an×2^(n-1)=(2n-1)×2^(n-1)=n×2^n-2^(n-1)
设cn=n×2^n,前n项和为Pn;dn=2^(n-1),前n项和为Qn,则Tn=Pn-Qn;
Qn=2^n-1,
Pn=2^1+2×2^2+3×2^3+……+n×2^n,
2Pn= 2^2+2×2^3+……+(n-1)×2^n+n×2^(n+1),
则Pn=-(2^1+2^2……+2^n)+n×2^(n+1)=n×2^(n+1)-2^(n+1)+2=(n-1)×2^(n+1)+2,
则Tn=Pn-Qn=(n-1)×2^(n+1)+2-2^n+1
Sn=(a1+an)n/2=n[2+(n-1)d]/2,
S2n=n[2+(2n-1)d],
则n[2+(2n-1)d]=4n[2+(n-1)d]/2,
解得d=2,则an=1+2(n-1)=2n-1,
Sn=n^2
2) bn=an×2^(n-1)=(2n-1)×2^(n-1)=n×2^n-2^(n-1)
设cn=n×2^n,前n项和为Pn;dn=2^(n-1),前n项和为Qn,则Tn=Pn-Qn;
Qn=2^n-1,
Pn=2^1+2×2^2+3×2^3+……+n×2^n,
2Pn= 2^2+2×2^3+……+(n-1)×2^n+n×2^(n+1),
则Pn=-(2^1+2^2……+2^n)+n×2^(n+1)=n×2^(n+1)-2^(n+1)+2=(n-1)×2^(n+1)+2,
则Tn=Pn-Qn=(n-1)×2^(n+1)+2-2^n+1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询