部分积分法:∫uv'dx=uv-∫u'vdx 及 ∫udv=uv-∫vdu 这两条公式是如何得出的???请指点指点。
3个回答
展开全部
根据两个函数乘积的导数公式:设u=u(x),v=v(x)
(uv)'=u'v+uv'移项后:uv'=(uv)'-u'v
两边求不定积分,根据积分的定义:∫uv'dx=uv-∫u'vdx
∫udv=uv-∫vdu 是公式的简写。
扩展资料
不定积分的公式
1、∫ a dx = ax + C,a和C都是常数
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C
展开全部
根据两个函数乘积的导数公式:设u=u(x),v=v(x)
(uv)'=u'v+uv'移项后:uv'=(uv)'-u'v
两边求不定积分,根据积分的定义:∫uv'dx=uv-∫u'vdx
∫udv=uv-∫vdu 是公式的简写。
(uv)'=u'v+uv'移项后:uv'=(uv)'-u'v
两边求不定积分,根据积分的定义:∫uv'dx=uv-∫u'vdx
∫udv=uv-∫vdu 是公式的简写。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
由求导公式:(uv)'=u'v+uv',将两边同时积分,即可得到uv=∫(uv'+u'v)dx=∫uv'dx+∫u'vdx,移项即得∫uv'dx=uv-∫u'vdx。再由一阶微分的形式不变性,v'dx=dv,u'dx=du,可得 ∫udv=uv-∫vdu.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询