求y=x^2sin3x的50阶导数
3个回答
展开全部
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
y=x^2.sin3x
y^(50)
=x^2. (sin3x)^(50) + C(50,1) (x^2)' . (sin3x)^(49) +C(50,2) (x^2)'' . (sin3x)^(48)
=x^2.[3^50.(-sin3x)] + (50)(2x).(3^49.cos3x) +(1225) (2) .(3^48.sin3x)
=3^48 .( -9x^2.sin3x +300xcosx +2450.sin3x )
y^(50)
=x^2. (sin3x)^(50) + C(50,1) (x^2)' . (sin3x)^(49) +C(50,2) (x^2)'' . (sin3x)^(48)
=x^2.[3^50.(-sin3x)] + (50)(2x).(3^49.cos3x) +(1225) (2) .(3^48.sin3x)
=3^48 .( -9x^2.sin3x +300xcosx +2450.sin3x )
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
本题计算过程如下:
(x^2)'=2x
(x^2)''=2
(x^2)'''=0
(sin3x)'=3cos3x=3sin(3x+π/2);
(sin3x)''=-9sin3x=-3^2sin(3x+2*π/2).
则:
y^(50)
=∑(0,50)C(50,r)(x^2)^(r)(sin3x)^(50-r)
=C(50,0)x^2(sin3x)^50+C(50,1)*2x*(sin3x)^49+C(50,2)*2(sin3x)^48
=3^50x^2sin(3x+π/2*50)+50*2x*sin(3x+49*π/2)*3^49+2450sin(3x+π/2*48)3^48
=-3^50x^2sin3x-100x*3^49cos3x+2450sin3x3^48.
(x^2)'=2x
(x^2)''=2
(x^2)'''=0
(sin3x)'=3cos3x=3sin(3x+π/2);
(sin3x)''=-9sin3x=-3^2sin(3x+2*π/2).
则:
y^(50)
=∑(0,50)C(50,r)(x^2)^(r)(sin3x)^(50-r)
=C(50,0)x^2(sin3x)^50+C(50,1)*2x*(sin3x)^49+C(50,2)*2(sin3x)^48
=3^50x^2sin(3x+π/2*50)+50*2x*sin(3x+49*π/2)*3^49+2450sin(3x+π/2*48)3^48
=-3^50x^2sin3x-100x*3^49cos3x+2450sin3x3^48.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |