求∫sin√xdx的不定积分
展开全部
令√x=t
那么x=t² dx=2tdt
∫sin√xdx=∫2tsintdt
=-2∫tdcost
=-2[tcost-∫costdt]
=-2[tcost-sint+C]
=-2tcost+2sint+C
=-2√xcos√x+2sin√x+C
那么x=t² dx=2tdt
∫sin√xdx=∫2tsintdt
=-2∫tdcost
=-2[tcost-∫costdt]
=-2[tcost-sint+C]
=-2tcost+2sint+C
=-2√xcos√x+2sin√x+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
令√x=t
∫sin√xdx
=2∫tsintdt
=-2∫tdcost
=-2tcost+2∫costdt
=-2tcost+2sint+C
=-2√xcos√x+2sin√x+C
∫sin√xdx
=2∫tsintdt
=-2∫tdcost
=-2tcost+2∫costdt
=-2tcost+2sint+C
=-2√xcos√x+2sin√x+C
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询