求不定积分1/x+根号下1-x^2
1个回答
展开全部
令x=sinu,则:u=arcsinx,dx=cosudu.
∴∫{1/[x+√(1-x^2)]}dx
=∫[1/(sinu+cosu)]cosudu
=∫[cosu/(sinu+cosu)]du.
=(√2/2)∫{cosu/[(√2/2)sinu+(√2/2)cosu]}du
=(√2/2)∫{cos(u+π/4-π/4)/[(sinucos(π/4)+cosusin(π/4)]}d(u+哗梁π/4)
=(√2/2)∫{[cos(u+π/4)cos(π/乱闭运4)+sinusin(π/4)]/sin(u+π/4)}d(u+π/4)
=(1/2)∫{[cos(u+π/4)+sin(u+π/态链4)]/sin(u+π/4)}d(u+π/4)
=(1/2)∫[cos(u+π/4)/sin(u+π/4)]d(u+π/4)+(1/2)∫d(u+π/4)
=(1/2)∫[1/sin(u+π/4)]d[sin(u+π/4)]+(1/2)(u+π/4)
=(1/2)ln|sin(u+π/4)|+(1/2)u+C
=(1/2)arcsinx+(1/2)ln|sinucos(π/4)+cosusin(π/4)|+C
=(1/2)arcsinx+(1/2)ln[(√2/2)|sinu+cosu|]+C
=(1/2)arcsinx+(1/2)ln(√2/2)+(1/2)ln|x+√(1-x^2)|+C
=(1/2)arcsinx+(1/2)ln|x+√(1-x^2)|+C
∴∫{1/[x+√(1-x^2)]}dx
=∫[1/(sinu+cosu)]cosudu
=∫[cosu/(sinu+cosu)]du.
=(√2/2)∫{cosu/[(√2/2)sinu+(√2/2)cosu]}du
=(√2/2)∫{cos(u+π/4-π/4)/[(sinucos(π/4)+cosusin(π/4)]}d(u+哗梁π/4)
=(√2/2)∫{[cos(u+π/4)cos(π/乱闭运4)+sinusin(π/4)]/sin(u+π/4)}d(u+π/4)
=(1/2)∫{[cos(u+π/4)+sin(u+π/态链4)]/sin(u+π/4)}d(u+π/4)
=(1/2)∫[cos(u+π/4)/sin(u+π/4)]d(u+π/4)+(1/2)∫d(u+π/4)
=(1/2)∫[1/sin(u+π/4)]d[sin(u+π/4)]+(1/2)(u+π/4)
=(1/2)ln|sin(u+π/4)|+(1/2)u+C
=(1/2)arcsinx+(1/2)ln|sinucos(π/4)+cosusin(π/4)|+C
=(1/2)arcsinx+(1/2)ln[(√2/2)|sinu+cosu|]+C
=(1/2)arcsinx+(1/2)ln(√2/2)+(1/2)ln|x+√(1-x^2)|+C
=(1/2)arcsinx+(1/2)ln|x+√(1-x^2)|+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询