正规矩阵不同特征值的特征向量两两正交

 我来答
温屿17
2022-06-28 · TA获得超过1.2万个赞
知道小有建树答主
回答量:827
采纳率:0%
帮助的人:94.9万
展开全部
对称矩阵不同特征值的特征向量一定是两两正交的,不需要加正规矩阵的条件:
设对称矩阵A特征值a1对应特征向量x1,a2对应特征向量x2,我们来证明x1'x2=0
考虑a1x1'x2=(a1x1)'x2=(Ax1)'x2=x1A'x2
a2x1x2=x1(a2x2)=x1Ax2.
这里A是对称阵,所以a1x1'x2=a2x1'x2,就是(a1-a2)x1'x2=0,因为a1和a2不等是已知条件,所以x1'x2=0.
这里要注意Ax=ax,然后x1,x2都是向量,a1和a2都是数,x1'x2是向量的内积也是一个数..其他的就都是高中知识了
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式