正规矩阵不同特征值的特征向量两两正交

 我来答
温屿17
2022-06-28 · TA获得超过1.2万个赞
知道小有建树答主
回答量:827
采纳率:0%
帮助的人:93.9万
展开全部
对称矩阵不同特征值的特征向量一定是两两正交的,不需要加正规矩阵的条件:
设对称矩阵A特征值a1对应特征向量x1,a2对应特征向量x2,我们来证明x1'x2=0
考虑a1x1'x2=(a1x1)'x2=(Ax1)'x2=x1A'x2
a2x1x2=x1(a2x2)=x1Ax2.
这里A是对称阵,所以a1x1'x2=a2x1'x2,就是(a1-a2)x1'x2=0,因为a1和a2不等是已知条件,所以x1'x2=0.
这里要注意Ax=ax,然后x1,x2都是向量,a1和a2都是数,x1'x2是向量的内积也是一个数..其他的就都是高中知识了
Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式