数列{an}中,an=2a(n-1)+2^n+1,a3=27 求an通项公式?

 我来答
新科技17
2022-06-10 · TA获得超过5898个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:74.6万
展开全部
待定系数法:
首先求得a3=27,a2=9,a1=2
设一整数λ.我们可以先构造一个{(an+λ)/(2^n)}数列.
(an+λ)/(2^n) - (a(n-1)+λ)/(2^(n-1)) = (an+λ-2a(n-1)-2λ)/(2^n)
将an=2a(n-1)+2^n+1 代入上式,可得到
(an+λ)/(2^n) - (a(n-1)+λ)/(2^(n-1) = 1 + (1-λ)/(2^n)
故此时可令λ=1.
从而 (an+1)/(2^n) - (a(n-1)+1)/(2^(n-1) = 1
即数列{(an+λ)/(2^n)}是以1为公差,(a1+1)/2=3/2为首项的等差数列.
其通项为:(an+λ)/(2^n)=2/3+n-1=1/2+n 移项后可得:
an=(1/2+n)2^n -1
代入a1,a2,a3进行验算,亦符合本通式.
建议你在纸上写一写,可能这个看着并不是很清楚.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式