在数列An中,a1=根号3,an+1=根号(1+an²)-1/an(n∈N*)
在数列An中,a1=根号3,an+1=根号(1+an²)-1/an(n∈N*)《根号包含(1+an²),根号(1+an²)-1是一个整体共同...
在数列An中,a1=根号3,an+1=根号(1+an²)-1/an(n∈N*)《根号包含(1+an²),根号(1+an²)-1 是一个整体 共同除以an》,数列Bn满足0<bn<π/2,且an=tanbn(n∈N*)
(1)求b1 b2的值
(2)求数列bn的通项公式
(3)设数列的前n项和为sn,若对于任何的n∈N*,不等式Sn≥(-1)的n次方λbn恒成立,求实数λ的取值范围。 展开
(1)求b1 b2的值
(2)求数列bn的通项公式
(3)设数列的前n项和为sn,若对于任何的n∈N*,不等式Sn≥(-1)的n次方λbn恒成立,求实数λ的取值范围。 展开
展开全部
1 a1=√3 b1= arctana1 b1=π/3 (0<bn<π/2)
a2=[根号(1+a1^2)-1]/a1=√3/3 b2=arctana2=π/6
2 an+1=[根号(1+an^2)-1]/an=[根号(1+tanbn^2)-1]/tanbn=(1-cosbn)/sinbn
∴ tanbn+1=sinbn+1/cosbn+1=(1-cosbn)/sinbn
整理得 cos(bn+1-bn)=cosbn+1
∵0<bn<π/2
∴bn+1-bn=-bn+1 即 bn+1=1/2bn
b1=π/3 ∴bn=2^(-n+1)π/3
3 Sn=2π/3[1-2^(-n)]≥(-1)^nλbn=(-1)^nλ2^(-n+1)π/3
整理不等式
(-1)^nλ≤2^n-1
当n为奇数 λ≥ 1-2^n
当n为偶数 λ≤2^n-1
a2=[根号(1+a1^2)-1]/a1=√3/3 b2=arctana2=π/6
2 an+1=[根号(1+an^2)-1]/an=[根号(1+tanbn^2)-1]/tanbn=(1-cosbn)/sinbn
∴ tanbn+1=sinbn+1/cosbn+1=(1-cosbn)/sinbn
整理得 cos(bn+1-bn)=cosbn+1
∵0<bn<π/2
∴bn+1-bn=-bn+1 即 bn+1=1/2bn
b1=π/3 ∴bn=2^(-n+1)π/3
3 Sn=2π/3[1-2^(-n)]≥(-1)^nλbn=(-1)^nλ2^(-n+1)π/3
整理不等式
(-1)^nλ≤2^n-1
当n为奇数 λ≥ 1-2^n
当n为偶数 λ≤2^n-1
展开全部
原题应为:
a1=√3,a(n+1)=(an-√3)/[(√3an )+1],求a2011=?
a1=√3,
a2=0/(3+1)=0,
a3=-√3/1=-√3
a4=-2√3/(-3+1)=√3= a1
a5=0/(3+1)=0=a2,
……
3个数一循环
所以a2011=a1=√3.
a1=√3,a(n+1)=(an-√3)/[(√3an )+1],求a2011=?
a1=√3,
a2=0/(3+1)=0,
a3=-√3/1=-√3
a4=-2√3/(-3+1)=√3= a1
a5=0/(3+1)=0=a2,
……
3个数一循环
所以a2011=a1=√3.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
Bn=n/2 *兀+兀/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1 a1=√3 b1= arctana1 b1=π/3 (0<bn<π/2)
a2=[根号(1+a1^2)-1]/a1=√3/3 b2=arctana2=π/6
2 an+1=[根号(1+an^2)-1]/an=[根号(1+tanbn^2)-1]/tanbn=(1-cosbn)/sinbn
∴ tanbn+1=sinbn+1/cosbn+1=(1-cosbn)/sinbn
cos(bn+1-bn)=cosbn+1
∵0<bn<π/2
∴bn+1-bn=-bn+1 即 bn+1=1/2bn
b1=π/3 则bn=2^(-n+1)π/3
3 Sn=2π/3[1-2^(-n)]≥(-1)^nλbn=(-1)^nλ2^(-n+1)π/3
(-1)^nλ≤2^n-1
λ≥ 1-2^n n=2k+i
λ≤2^n-1 n=2k
a2=[根号(1+a1^2)-1]/a1=√3/3 b2=arctana2=π/6
2 an+1=[根号(1+an^2)-1]/an=[根号(1+tanbn^2)-1]/tanbn=(1-cosbn)/sinbn
∴ tanbn+1=sinbn+1/cosbn+1=(1-cosbn)/sinbn
cos(bn+1-bn)=cosbn+1
∵0<bn<π/2
∴bn+1-bn=-bn+1 即 bn+1=1/2bn
b1=π/3 则bn=2^(-n+1)π/3
3 Sn=2π/3[1-2^(-n)]≥(-1)^nλbn=(-1)^nλ2^(-n+1)π/3
(-1)^nλ≤2^n-1
λ≥ 1-2^n n=2k+i
λ≤2^n-1 n=2k
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询