如何证明函数单调性

爱说八卦i
高粉答主

2019-10-22 · 说的都是干货,快来关注
知道答主
回答量:4.7万
采纳率:14%
帮助的人:2337万
展开全部
帐号已注销
推荐于2019-08-09 · TA获得超过8.4万个赞
知道答主
回答量:9
采纳率:0%
帮助的人:3483
展开全部

判定函数在某个区间上的单调性的方法步骤有两种主要方法:

定义法:

1.  设任意x1、x2∈给定区间,且x1<x2.

2.  计算f(x1)- f(x2)至最简。【最好表示为整式乘积的形式】

3.  判断上述差的符号。

求导法:

利用导数公式进行求导,然后判断导函数和0的大小关系,从而判断增减性,导函数值大于0,说明是严格增函数,导函数值小于0,说明是严格减函数,前提是原函数必须是连续的。当导数大于等于0时也可为增函数,同理当导数小于等于0时也可为减函数。

扩展资料:

有些函数在整个定义域内是单调的;有些函数在定义域内的部分区间上是增函数,在部分区间上是减函数;有些函数是非单调函数,如常数函数。

函数的单调性是函数在一个单调区间上的“整体”性质,具有任意性,不能用特殊值代替。

在利用导数讨论函数的单调区间时,首先要确定函数的定义域,解决问题的过程中只能在定义域内,通过讨论导数的符号来判断函数的单调区间。

如果一个函数具有相同单调性的单调区间不止一个,那么这些单调区间不能用“∪”连接,而只能用“逗号”或“和”字隔开。

参考资料:单调性-百度百科

单调函数-百度百科

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
fengteng1314
2018-07-27 · 知道合伙人教育行家
fengteng1314
知道合伙人教育行家
采纳数:13795 获赞数:207226
我个人对数学等理科方面比较有兴趣,乐意帮助大家解答关于数学等理科方面的问题

向TA提问 私信TA
展开全部

  判断方法如下:

  图象观察

  如上所述,在单调区间上,增函数的图象是上升的,减函数的图象是下降的。因此,在某一区间内,一直上升的函数图象对应的函数在该区间单调递增;

  一直下降的函数图象对应的函数在该区间单调递减;

  注意:对于分段函数,要特别注意。例如,上图左可以说是一个增函数;上图右就不能说是在定义域上的一个增函数(在定义域上不具有单调性)。

  定义证明

  如果需要严格证明某区间上函数的单调性,则观察图象的方法就显得不太可靠了,因此需要用定义证明。

  步骤:

  任意取值:即设x1、x2是该区间内的任意两个值,且x1<x2

  作差变形:作差f(x2)-f(x1),并因式分解、配方、分母有理化等方法将差式向有利于判断差的符号的方向变形。

  判断定号:确定f(x2) - f(x1)的符号。

  得出结论:根据定义作出结论(若差>0,则为增函数;若差<0,则为减函数)。

  即“任意取值——作差变形——判断定号——得出结论”。

  一阶导数

  如果函数y=f(x)在区间D内可导(可微),若x∈D时恒有f'(x)>0,则函数y=f(x)在区间D内单调增加;反之,若x∈D时,f'(x)<0,则称函数y=f(x)在区间D内单调减少。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
遇宇雨
推荐于2017-11-24 · TA获得超过456个赞
知道答主
回答量:79
采纳率:0%
帮助的人:58.5万
展开全部
一般2种方法 ,方法一:设给定区域中任意两个实数x1<x2,若f(x1)<f(x2)
则函数在给定区域是单调递增的
反之,给定区域中任意两个实数x1<x2,若f(x1)>f(x2)
则函数在给定区域是单调递减的
方法二.利用导数
若导数在给定区域恒大于0,就单调递增
恒小于0,就单调递减了 ...... 导数是选修1-1的,不知道你有没有学
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友066dc732e
2011-08-29 · TA获得超过1.2万个赞
知道大有可为答主
回答量:5675
采纳率:33%
帮助的人:1877万
展开全部
在X的区间上任意取两点,假设为X1和X2,且X1<X2
分别将X1和X2代入函数中,求f(X1)-f(x2)或f(X1)/f(x2)
如果f(x1)-f(x2)<0,则说明函数f(x)在区间内单调递增,反之则单调递减;
如果f(x1)/f(x2)<1,则说明函数f(x)在区间内单调递增,反之则单调递减。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(5)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式