等差数列中项公式是什么?
1个回答
展开全部
等差数列的通项公式:
例如:1,3,5,7,9……2n-1。
通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。
通项公式推导:
a2-a1=d;a3-a2=d;a4-a3=d……an-a(n-1)=d,将上述式子左右分别相加,得出an-a1=(n-1)*d→an=a1+(n-1)*d。
前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2
Sn=[n*(a1+an)]/2
Sn=d/2*n²+(a1-d/2)*n
注:以上n均属于正整数。
等差数列的性质:
若m,n,p,q∈N*,且m+n=p+q,则有:
am+an=ap+aq。
Sm-1=(2n-1)an,S2n+1=(2n+1)an+1。
Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。
和=(首项+末项)*项数÷2。
项数=(末项-首项)÷公差+1。
首项=2和÷项数-末项。
末项=2和÷项数-首项。
项数=(末项-首项)/公差+1。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询