求问不定积分
请问谁能帮我解答一下这个不定积分?\(\displaystyle{\int\frac{1}{2+\sqrt{x^2-2x+5}}dx}\)...
请问谁能帮我解答一下这个不定积分? \( \displaystyle{ \int\frac{1}{2+\sqrt{x^2-2x+5}}dx }\)
展开
2个回答
展开全部
解:
原式= \( \displaystyle{ \int\frac{1}{2+\sqrt{\left(x-1\right)^2+4}}\text{d}x } \).令\(x-1=2\tan t\),\(t \in \displaystyle{(-\frac{\pi}{2},\frac{\pi}{2})}\),则\( \text{d}x=2\sec ^2t \text{d} t\),代入得
原式=\( \displaystyle{ \int\frac{1}{2+\sqrt{4 \tan ^2 t+4}}\cdot 2\sec ^2 t\text{d}t } \)
= \( \displaystyle{ \int\frac{\sec^2t}{1+\sec t}\text{d}t=\int\frac{\text{d}t}{\cos\:t\:\left(1+\cos t\right)} } \)
= \( \displaystyle{ \int\left(\frac{1}{\cos t}-\frac{1}{1\:+\:\cos\:t}\right)\text{d}t=\int\left(\sec t-\frac{1}{2}\sec^2\:\frac{t}{2}\right)\text{d}t } \)
=\( \displaystyle { \ln \left| \sec t + \tan t \right| - \tan \frac{t}{2}+ C }\)
把\( \tan t = \frac{x-1}{2} \) , \( \sec t = \sqrt{1 + \tan ^2 t} = \frac{1}{2}\sqrt{x^2-2x+5} \)以及
\(\tan \frac{t}{2} = \frac{1-\cos t}{\sin t} = \frac{\sec t - 1}{\tan t} = \frac{\sqrt{x^2-2x+5}-2}{x-1}+C \)
代回,得
原式=\( \displaystyle {\ln \left( \sqrt{x^2 - 2x + 5} + ( x - 1) \right) - \frac{\sqrt{x^2-2x+5}-2}{x-1} + C }\)
原式= \( \displaystyle{ \int\frac{1}{2+\sqrt{\left(x-1\right)^2+4}}\text{d}x } \).令\(x-1=2\tan t\),\(t \in \displaystyle{(-\frac{\pi}{2},\frac{\pi}{2})}\),则\( \text{d}x=2\sec ^2t \text{d} t\),代入得
原式=\( \displaystyle{ \int\frac{1}{2+\sqrt{4 \tan ^2 t+4}}\cdot 2\sec ^2 t\text{d}t } \)
= \( \displaystyle{ \int\frac{\sec^2t}{1+\sec t}\text{d}t=\int\frac{\text{d}t}{\cos\:t\:\left(1+\cos t\right)} } \)
= \( \displaystyle{ \int\left(\frac{1}{\cos t}-\frac{1}{1\:+\:\cos\:t}\right)\text{d}t=\int\left(\sec t-\frac{1}{2}\sec^2\:\frac{t}{2}\right)\text{d}t } \)
=\( \displaystyle { \ln \left| \sec t + \tan t \right| - \tan \frac{t}{2}+ C }\)
把\( \tan t = \frac{x-1}{2} \) , \( \sec t = \sqrt{1 + \tan ^2 t} = \frac{1}{2}\sqrt{x^2-2x+5} \)以及
\(\tan \frac{t}{2} = \frac{1-\cos t}{\sin t} = \frac{\sec t - 1}{\tan t} = \frac{\sqrt{x^2-2x+5}-2}{x-1}+C \)
代回,得
原式=\( \displaystyle {\ln \left( \sqrt{x^2 - 2x + 5} + ( x - 1) \right) - \frac{\sqrt{x^2-2x+5}-2}{x-1} + C }\)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询