30以内的乘法心算怎么算的

 我来答
天罗网17
2022-06-18 · TA获得超过6198个赞
知道小有建树答主
回答量:306
采纳率:100%
帮助的人:73.6万
展开全部
一、30以内的两个两位数乘积的心算速算
1、两个因数都在20以内
任意两个20以内的两个两位数的积,都可以将其中一个因数的”尾数”移加到另一个因数上,然后补一个0,再加上两“尾数”的积.例如:
11×11=120+1×1=121
12×13=150+2×3=156
13×13=160+3×3=169
14×16=200+4×6=224
16×18=240+6×8=288
2、两个因数分别在10至20和20至30之间
对于任意这样两个因数的积,都可以将较小的一个因数的“尾数”的2倍移加到另一个因数上,然后补一个0,再加上两“尾数”的积.例如:
22×14=300+2×4=308
23×13=290+3×3=299
26×17=400+6×7=442
28×14=360+8×4=392
29×13=350+9×3=377
3、两个因数都在20至30之间
对于任意这样两个因数的积,都可以将其中一个因数的“尾数”移加到另一个因数上求积,然后再加上两“尾数”的积.例如:
22×21=23×20+2×1=462
24×22=26×20+4×2=528
23×23=26×20+3×3=529
21×28=29×20+1×8=588
29×23=32×20+9×3=667
掌握此法后,30以内两个因数的积,都可以用心算快速求出结果.
二、大于70的两个两位数乘积的心算速算
对于任意这样两个因数的积,都可以用其中的一个因数将另一个因数补成100求积,再加上100分别与这两个因数差的积.例如:
99×99=98×100+1×1=9801
97×98=95×100+3×2=9506
93×94=87×100+7×6=8742
88×93=81×100+12×7=8184
84×89=73×100+16×11=7476
78×79=57×100+22×21=6162
75×75=50×100+25×25=5625
掌握上述两方法后,30以内两个因数的积和大于70的两个两位数的积,都可以用心算快速求出结果.
三、大于50小于70的两个两位数乘积的心算速算
对于任意这样两个因数的积,都可以将较小一个因数大于50的部分移加到另一个因数上求积,然后再加上这两个因数分别与50差的积.(运用一个因数乘以50等于将这个因数平分后乘以100)例如:
51×51=26×100+1×1=2601
53×59=31×100+3×9=3127
54×62=33×100+4×12=3348
56×66=36×100+6×16=3696
66×66=41×100+16×16=4356
四、大于30小于50的两个两位数乘积的心算速算
对于任意这样两个因数的积,都可以用较小一个因数将另一个因数补成50求积,然后再加上50分别与这两个因数差的积.(运用一个因数乘以50等于将这个因数平分后乘以100)例如:
49×49=24×100+1×1=2401
46×48=22×100+4×2=2208
44×42=18×100+6×8=1848
37×47=17×100+13×3=1739
32×46=14×100+18×4=1472
五、乘法口算速算法
乘法口算速算法是一种简便的,极易被掌握的乘法心算速算法,是将传统算法改为补整法,例如:49×47可改为50×46+1×3=2303, 98×94可改为 100×92+2×6=9212;移尾法,例如:51×53可改为50×54+1×

1、两个因数都在20以内
任意两个20以内的两个两位数的积,都可以将其中一个因数的”尾数”移加到另一个因数上,然后补一个0,再加上两“尾数”的积.例如:
11×11=120+1×1=121
12×13=150+2×3=156
13×13=160+3×3=169
14×16=200+4×6=224
16×18=240+6×8=288
2、两个因数分别在10至20和20至30之间
对于任意这样两个因数的积,都可以将较小的一个因数的“尾数”的2倍移加到另一个因数上,然后补一个0,再加上两“尾数”的积.例如:
22×14=300+2×4=308
23×13=290+3×3=299
26×17=400+6×7=442
28×14=360+8×4=392
29×13=350+9×3=377
3、两个因数都在20至30之间
对于任意这样两个因数的积,都可以将其中一个因数的“尾数”移加到另一个因数上求积,然后再加上两“尾数”的积.例如:
22×21=23×20+2×1=462
24×22=26×20+4×2=528
23×23=26×20+3×3=529
21×28=29×20+1×8=588
29×23=32×20+9×3=667
掌握此法后,30以内两个因数的积,都可以用心算快速求出结果.
二、大于70的两个两位数乘积的心算速算
对于任意这样两个因数的积,都可以用其中的一个因数将另一个因数补成100求积,再加上100分别与这两个因数差的积.例如:
99×99=98×100+1×1=9801
97×98=95×100+3×2=9506
93×94=87×100+7×6=8742
88×93=81×100+12×7=8184
84×89=73×100+16×11=7476
78×79=57×100+22×21=6162
75×75=50×100+25×25=5625
掌握上述两方法后,30以内两个因数的积和大于70的两个两位数的积,都可以用心算快速求出结果.
三、大于50小于70的两个两位数乘积的心算速算
对于任意这样两个因数的积,都可以将较小一个因数大于50的部分移加到另一个因数上求积,然后再加上这两个因数分别与50差的积.(运用一个因数乘以50等于将这个因数平分后乘以100)例如:
51×51=26×100+1×1=2601
53×59=31×100+3×9=3127
54×62=33×100+4×12=3348
56×66=36×100+6×16=3696
66×66=41×100+16×16=4356
四、大于30小于50的两个两位数乘积的心算速算
对于任意这样两个因数的积,都可以用较小一个因数将另一个因数补成50求积,然后再加上50分别与这两个因数差的积.(运用一个因数乘以50等于将这个因数平分后乘以100)例如:
49×49=24×100+1×1=2401
46×48=22×100+4×2=2208
44×42=18×100+6×8=1848
37×47=17×100+13×3=1739
32×46=14×100+18×4=1472
五、乘法口算速算法
乘法口算速算法是一种简便的,极易被掌握的乘法心算速算法,是将传统算法改为补整法,例如:49×47可改为50×46+1×3=2303, 98×94可改为 100×92+2×6=9212;移尾法,例如:51×53可改为50×54+1×3=2703, 31×32可改为30×33+1×2=992;补商法,例如:84×24可改为100×20+4×4=2016等等,下面逐个介绍,并注意一个因数乘以50等于将这个因数平分后乘以100.
1、补整法
任意两个因数的积,都可以用其中的一个因数将另一个因数补成“整数”求积,然后再加上这个“整数”分别与这两个因数差的积.例如:
19×19=18×20+1×1=361
27×28=25×30+3×2=756
46×48=44×50+4×2=2208
94×99=93×100+6×1=9306
87×98=85×100+13×2=8526
38×48=36×50+12×2=1824
补整法比较适用于首接近尾之和不小于10的乘法,特别适用于两个因数都略小于20、30、50、100的乘法.
2、移尾法
任意两个因数的积,都可以将其中一个因数的”尾数”移加到另一个因数上求积,然后再加上这两个因数分别与这个“整数”差的积.例如:
14×12=16×10+4×2=168
22×23=25×20+2×3=506
55×51=56×50+5×1=2805
62×54=66×50+12×4=3348
43×37=50×30+13×7=1591
112×103=115×100+12×3=11536
移尾法比较适用于首接近尾之和不大于10的乘法,特别适用于两个因数都略大于10、20、30、50、100的乘法.
3、补商法
令A、B、C、D为待定数字,则任意两个因数的积都可以表示成:
AB×CD=(AB+A×D/C)×C0+B×D
补商法特别适用于C能整除A×D的乘法.例如:
23×13=29×10+3×3=299
33×12=39×10+3×2=396
46×11=50×10+6×1=506
28×77=30×70+8×7=2156
82×55=90×50+2×5=4510
81×24=97×20+1×4=1944
76×36=90×30+6×6=2736
当C不能整除A×D时,AB可加A×D/C的整数部分运算,余几就在原结果上再加几十.例如:
84×65=90×60+40+4×5=5460
73×32=77×30+20+3×2=2336
掌握此法后,130以内两个因数的积,基本上都可以用心算快速求出结果.
六、接近100的两个数乘积的心算速算技巧
对于计算任意两个大于90的两位数的乘积及任意两个小于110的三位数的乘积,运用巧妙的算速方法,人人都可以做到准确、快速、达到心算一口清.
1、两个都小于11 0的三位数的乘积
对于任意两个小于11 0的三位数的乘积,其积必定是五位数,且左边三位数总是等于其中一个因数加上另一个因数的“尾数”,右边两位数总是等于两“尾数”的积.例如:
108×109=11772.左边三位数等于108+9=117,右边两位数等于8×9=72,同理:
105×107=11342
104×109=11336
102×103=10506,右边两位数等于2×3=6,因为是两位,所以应写成06,同理:
101×109=11009
103×103=10609
2、任意两个大于90的两位数的乘积
对于任意两个大于90的两位数的乘积,其积必定是四位数,且左边两位数总是等于80加上两个因数的“尾数”,右边两位数总是等于100分别与这两个因数差的积.例如:
91×92=8372,左边两位数等于80+1+2=83,右边两位数等于(100-91)×(100-92)=72,同理:
93×93=8649
94×94=8836
95×96=9120
99×98=9702,右边两位数等于1×2=2,因为是两位,所以应写成02,同理:
99×99=9801
97×97=9409
仅供参考.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
北京埃德思远电气技术咨询有限公司
2023-08-25 广告
整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算及... 点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式