cosx的n次方的不定积分
1个回答
展开全部
cosx的n次方的不定积分是∫(0,π/2)[cos(x)]^ndx,∫(0,π/2)[sin(x)]^ndx等于(n-1)/n*(n-3)/(n-2)*…*4/5*2/3,n为奇数;等于(n-1)/n*(n-3)/(n-2)*…*3/4*1/2*π/2,n为偶数。
对于一个给定的正实值函数,在一个实数区间上的定积分可以理解为在坐标平面上,由曲线、直线以及轴围成的曲边梯形的面积值(一种确定的实数值)。如果一个函数的积分存在,并且有限,就说这个函数是可积的。被积函数不一定只有一个变量,积分域也可以是不同维度的空间,甚至是没有直观几何意义的抽象空间。
对于一个给定的正实值函数,在一个实数区间上的定积分可以理解为在坐标平面上,由曲线、直线以及轴围成的曲边梯形的面积值(一种确定的实数值)。如果一个函数的积分存在,并且有限,就说这个函数是可积的。被积函数不一定只有一个变量,积分域也可以是不同维度的空间,甚至是没有直观几何意义的抽象空间。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询