1个回答
2011-08-29
展开全部
f(x)=sinx(sinx+√3cosx)
=(sinx)^2+根号3sinxcosx
=(1-cos2x)/2+根号3/2 sin2x
=sin2x*cosπ/6-cos2x sinπ/6+1/2
=sin(2x-π/6)+1/2
其中x∈[0,π/2],那么2x-π/6属于[-π/6,5π/6]
所以,-1/2<=sin(2x-π/6)<=1.
即f(x)的最大值是:1+1/2=3/2,最小值是:-1/2+1/2=0。
=(sinx)^2+根号3sinxcosx
=(1-cos2x)/2+根号3/2 sin2x
=sin2x*cosπ/6-cos2x sinπ/6+1/2
=sin(2x-π/6)+1/2
其中x∈[0,π/2],那么2x-π/6属于[-π/6,5π/6]
所以,-1/2<=sin(2x-π/6)<=1.
即f(x)的最大值是:1+1/2=3/2,最小值是:-1/2+1/2=0。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询