已知x²-2=0,求代数式[(x-1)²]/(x²-1)+(x²)/(x+1)的值.
展开全部
x^2-2=0,
x^2=2
原式=(x^2+1-2x)/x^2-1+x^2/x+1
把x^2=2代入,得
(1-2x)/2+1/x+1
将式子通分,得
((1-2x)(x+1)+2)/2(x+1)
化简后将x^2=2代入,化简,得
-(x+1)/2(x+1)
= -1/2
x^2=2
原式=(x^2+1-2x)/x^2-1+x^2/x+1
把x^2=2代入,得
(1-2x)/2+1/x+1
将式子通分,得
((1-2x)(x+1)+2)/2(x+1)
化简后将x^2=2代入,化简,得
-(x+1)/2(x+1)
= -1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
[(x-1)²]/(x²-1)+(x²)/(x+1)
= [(x-1)²]/(x²-1)+(x²)(x-1)/[(x+1)(x-1)]
= (x² - 2x + 1 + x³ - x²)/ (x²-1)
= [x(x²-2) + 1]/(x²-2 + 1)
= (x*0 + 1)/(0 + 1)
= 1
= [(x-1)²]/(x²-1)+(x²)(x-1)/[(x+1)(x-1)]
= (x² - 2x + 1 + x³ - x²)/ (x²-1)
= [x(x²-2) + 1]/(x²-2 + 1)
= (x*0 + 1)/(0 + 1)
= 1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
由已知得:x²=2
[(x-1)²]/(x²-1)+(x²)/(x+1)
=[(x-1)²]/(x+1)(x-1)+x²/(x+1)
=[(x-1)+x²]/(x+1)
=(x+1)/(x+1)
=1
[(x-1)²]/(x²-1)+(x²)/(x+1)
=[(x-1)²]/(x+1)(x-1)+x²/(x+1)
=[(x-1)+x²]/(x+1)
=(x+1)/(x+1)
=1
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-08-29
展开全部
x^2-2=0 ->x^2=2
->(x-1)^2/(x^2-1)+x^2/(x+1)=(x-1)^2+2*(x-1)/[(x+1)*(x-1)]=(x-1)^2+2x-2=x-2x+1+2x-2=1
->(x-1)^2/(x^2-1)+x^2/(x+1)=(x-1)^2+2*(x-1)/[(x+1)*(x-1)]=(x-1)^2+2x-2=x-2x+1+2x-2=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
题目有误?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询