线代证明|A*|=|A|^(n-1) n≥2

 我来答
faker1718
2022-05-30 · TA获得超过971个赞
知道小有建树答主
回答量:272
采纳率:100%
帮助的人:51万
展开全部
①.rA<n-1:|A|=0=|A*|.(A*的元素都是0),|A*|=|A|^(n-1)成立.
②.rA=n-1:|A|=0.AX=0的基础解系只含一个解.(X是列向量)
而AA*=|A|E=0.A*的列向量都是AX=0的解,必须成比例.∴|A*|=0
|A*|=|A|^(n-1)成立.
③.rA=n:|A|≠0.AA*=|A|E.
|A||A*|=||A|E|=|A|^n,消去|A|≠0.得到:|A*|=|A|^(n-1).
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式