什么是悖论(详细一点)?请举几个著名例子.

 我来答
机器1718
2022-05-09 · TA获得超过6843个赞
知道小有建树答主
回答量:2805
采纳率:99%
帮助的人:162万
展开全部
悖论指在逻辑上可以推导出互相矛盾之结论,但表面上又能自圆其说的命题或理论体系.
公元前六世纪,哲学家克利特人艾皮米尼地斯(Epimenides):“所有克利特人都说谎,他们中间的一个诗人这么说.”这就是这个著名悖论的来源.  《圣经》里曾经提到:“有克利特人中的一个本地中先知说:‘克利特人常说谎话,乃是恶兽,又馋又懒’”(《提多书》第一章).可见这个悖论很出名,但是保罗对于它的逻辑解答并没有兴趣.  人们会问:艾皮米尼地斯有没有说谎?这个悖论最简单的形式是:
1-2 “我在说谎”
  如果他在说谎,那么“我在说谎”就是一个谎,因此他说的是实话;但是如果这是实话,他又在说谎.矛盾不可避免.它的一个翻版:
1-3 “这句话是错的”
  这类悖论的一个标准形式是:如果事件A发生,则推导出非A,非A发生则推导出A,这是一个自相矛盾的无限逻辑循环.拓扑学中的单面体是一个形像的表达.
1-4 理发师悖论
  在萨维尔村,理发师挂出一块招牌:“我只给村里所有那些不给自己理发的人理发.”有人问他:“你给不给自己理发?”理发师顿时无言以对.  这是一个矛盾推理:如果理发师不给自己理发,他就属于招牌上的那一类人.有言在先,他应该给自己理发.反之,如果这个理发师给他自己理发,根据招牌所言,他只给村中不给自己理发的人理发,他不能给自己理发.  因此,无论这个理发师怎么回答,都不能排除内在的矛盾.这个悖论是罗素在一九○二年提出来的,所以又叫“罗素悖论”.这是集合论悖论的通俗的、有故事情节的表述.显然,这里也存在着一个不可排除的“自指”问题.
1-5 集合论悖论
  “R是所有不包含自身的集合的集合.”   人们同样会问:“R包含不包含R自身?”如果不包含,由R的定义,R应属于R.如果R包含自身的话,R又不属于R.  继罗素的集合论悖论发现了数学基础有问题以后,1931年歌德尔(Kurt Godel ,1906-1978,捷克人)提出了一个“不完全定理”,打破了十九世纪末数学家“所有的数学体系都可以由逻辑推导出来”的理想.这个定理指出:任何公设系统都不是完备的,其中必然存在着既不能被肯定也不能被否定的命题.例如,欧氏几何中的“平行线公理”,对它的否定产生了几种非欧几何;罗素悖论也表明集合论公理体系不完备.
2-3 “飞矢不动”   在芝诺看来,由于飞箭在其飞行的每个瞬间都有一个瞬时的位置,它在这个位置上和不动没有什么区别.那么,无限个静止位置的总和就等于运动了吗?或者无限重复的静止就是运动?中国古代也有类似的说法,如:  2-4 “飞鸟之景,未尝动也”   这是中国名家惠施的命题,与“飞矢不动”同工异曲.这就是不可抗拒的推理和不可回避的实事相冲突.
其他详细内容请参考百度百科.觉得请及时采纳.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式