Sin ²A+sin²B+sin²C<2,求三角形形状
4个回答
展开全部
三角形内角和为180
A+B+C=180
所以Sin ²A+sin²B+sin²C<2
sin^2(180-B-C)+sin²B+sin²C<2
sin^2(B+C)<cos^2B+cos^2C
sin^2Bcos^2C+2sinBsinCcosBcosC+sin^2Ccos^2B<cos^2B+cos^2C
2sinBsinCcosBcosC<2cos^2Bcos^2C
tanBtanC<1
同理可得
tanAtanC<1
tanAtanB<1
1)如果A\B\C中有一个为钝角,令A>90
则tanA<0,tanB>0,tanC>0
tanB<1/tanC=tan(90-C)
B<90-C
B+C<90
满足A是钝角的假设
2)如果A\B\C都为锐角
则tanA>0,tanB>0,tanC>0
tanB<1/tanC=tan(90-C)
B<90-C
B+C<90
则A=180-B-C>90
矛盾
假设不成立
综合1)、2)可知A\B\C中有一个钝角,即三角形为钝角三角形
A+B+C=180
所以Sin ²A+sin²B+sin²C<2
sin^2(180-B-C)+sin²B+sin²C<2
sin^2(B+C)<cos^2B+cos^2C
sin^2Bcos^2C+2sinBsinCcosBcosC+sin^2Ccos^2B<cos^2B+cos^2C
2sinBsinCcosBcosC<2cos^2Bcos^2C
tanBtanC<1
同理可得
tanAtanC<1
tanAtanB<1
1)如果A\B\C中有一个为钝角,令A>90
则tanA<0,tanB>0,tanC>0
tanB<1/tanC=tan(90-C)
B<90-C
B+C<90
满足A是钝角的假设
2)如果A\B\C都为锐角
则tanA>0,tanB>0,tanC>0
tanB<1/tanC=tan(90-C)
B<90-C
B+C<90
则A=180-B-C>90
矛盾
假设不成立
综合1)、2)可知A\B\C中有一个钝角,即三角形为钝角三角形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1-cos2A+1-cos2B+1-cos2C<4
cos2A+cos2B+cos2C+1>0
2cos(A+B)cos(A-B)+2cos²C>0
cos(A+B)cos(A-B)+cos²(A+B)>0
cos(A+B)[cos(A-B)+cos(A+B)]>0
-cosC[2cosAcosB]>0
即cosCcosAcosB<0
所以ABC中必有一个是钝角,结论钝角三角形
cos2A+cos2B+cos2C+1>0
2cos(A+B)cos(A-B)+2cos²C>0
cos(A+B)cos(A-B)+cos²(A+B)>0
cos(A+B)[cos(A-B)+cos(A+B)]>0
-cosC[2cosAcosB]>0
即cosCcosAcosB<0
所以ABC中必有一个是钝角,结论钝角三角形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
钝角三角形
但我不知道你是填空题还是什么,快速作答可假设值来确定
1,设3个角都是60度,不满足
2,设是等腰直角三角形,不满足
3,得出是钝角三角形。
但我不知道你是填空题还是什么,快速作答可假设值来确定
1,设3个角都是60度,不满足
2,设是等腰直角三角形,不满足
3,得出是钝角三角形。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询