在△ABC中,内角A,B,C的对边分别为a,b,c,已知a,b,c成等比数列,且cosB=3/4.
2个回答
展开全部
因为cosB=3/4, 0<B<π, 所以sinB=√7/4.
由b^2=ac, 和正弦定理可得(sinB)^2 = sinAsinC.
1. cotA + cotC = (cosAsinC + cosCsinA)/(sinAsinC)=sin(A+C)/(sinB)^2 = 1/sinB = 4√7/7.
2. 由cosB=3/4,可得cos(B/2)=√14/4.
由b^2=ac=BC*BA=3/2, 可得b=√6/2.
由(sinB)^2 = sinAsinC=1/2 * (cos(A-C)-cos(A+C))=1/2 * (cos(A-C)+cosB), 解得cos(A-C)=1/8,
进而可得cos((A-C)/2)=3/4.
由正弦定理可得a+c=b*(sinA + sinC)/sinB=2bsin((A+C)/2)cos((A-C)/2)/sinB
=2bcos(B/2)cos((A-C)/2)/sinB
=2*√6/2 * √14/4 * 3/4 /(√7/4)=3√3/2.
由b^2=ac, 和正弦定理可得(sinB)^2 = sinAsinC.
1. cotA + cotC = (cosAsinC + cosCsinA)/(sinAsinC)=sin(A+C)/(sinB)^2 = 1/sinB = 4√7/7.
2. 由cosB=3/4,可得cos(B/2)=√14/4.
由b^2=ac=BC*BA=3/2, 可得b=√6/2.
由(sinB)^2 = sinAsinC=1/2 * (cos(A-C)-cos(A+C))=1/2 * (cos(A-C)+cosB), 解得cos(A-C)=1/8,
进而可得cos((A-C)/2)=3/4.
由正弦定理可得a+c=b*(sinA + sinC)/sinB=2bsin((A+C)/2)cos((A-C)/2)/sinB
=2bcos(B/2)cos((A-C)/2)/sinB
=2*√6/2 * √14/4 * 3/4 /(√7/4)=3√3/2.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询