cos2a/sin(a-π/4) =-根号(2)/2,则cosa+sina的值为?
1个回答
展开全部
cos2a/sin(a-π/4)=(2cos2a*cos(a-π/4)) /(2sin(a-π/4) cos(a-π/4))
cos2a/sin(a-π/4)=(2cos2a*cos(a-π/首告4)) /sin(2a-π/2)
cos2a/sin(a-π/4)=-(2cos2a*cos(a-π/4)) /cos2a
cos2a/sin(a-π/4)=-2*cos(a-π/罩碧4)
-2*cos(a-π/4) =-√2/2
cos(a-π/4) =√2/4
cosa*cos(π/物芹举4)+sina*sin(π/4)=√2/4
cosa+cosb=1/2
cos2a/sin(a-π/4)=(2cos2a*cos(a-π/首告4)) /sin(2a-π/2)
cos2a/sin(a-π/4)=-(2cos2a*cos(a-π/4)) /cos2a
cos2a/sin(a-π/4)=-2*cos(a-π/罩碧4)
-2*cos(a-π/4) =-√2/2
cos(a-π/4) =√2/4
cosa*cos(π/物芹举4)+sina*sin(π/4)=√2/4
cosa+cosb=1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询