y的二阶导数=1+(y的一阶导数)的平方,求微分方程的通解?
1个回答
展开全部
由题意知y'孝巧'=1+(y')^2
令y'=p,则y''=p'=dp/dx
于是原方程可以写成:p'=1+p^2,
所以dp/(1+p^2)=dx
对等宏蠢式两端同时蔽慎陪积分得到:arctan p=x+c1(c1为常数)
即p=tan(x+c1),y'=tan(x+c1),
所以dy=tan(x+c1) dx,
再对等式两端同时积分得到微分方程的通解为:
y= -ln |cos(x+c1)|+c2 (c1、c2均为常数),1,
令y'=p,则y''=p'=dp/dx
于是原方程可以写成:p'=1+p^2,
所以dp/(1+p^2)=dx
对等宏蠢式两端同时蔽慎陪积分得到:arctan p=x+c1(c1为常数)
即p=tan(x+c1),y'=tan(x+c1),
所以dy=tan(x+c1) dx,
再对等式两端同时积分得到微分方程的通解为:
y= -ln |cos(x+c1)|+c2 (c1、c2均为常数),1,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询