泰勒公式中佩亚诺余项到底能用来干什么?

 我来答
鲸志愿
2022-09-30 · 专注大中学生升学规划服务
鲸志愿
向TA提问
展开全部

估计误差用的。

佩亚诺余项泰勒公式在做数值近似计算时有用,最简单的例子就是近似估算三角函数的值。

例如tg2°=tg(pi/90),然后再用公式展开估算。

带佩亚诺余项的泰勒公式可以表示为:

f(x)=f(x0)+(x-x0)*f'(x0)/1!du+(x-x0)^2*f''(x0)/2!+…+(x-x0)^n*f^(n)(x0)/n!+o((x-x0)^n)

而x0→0时

f(x)=f(0)+x*f'(0)/1!+x^2*f''(0)/2!+…+x^n*f^(n)(0)/n!+o(x^n)

扩展资料:

泰勒公式是将一个在x=x0处具有n阶导数的函数f(x)利用关于(x-x0)的n次多项式来逼近函数的方法。

若函数f(x)在包含x0的某个闭区间[a,b]上具有n阶导数,且在开区间(a,b)上具有(n+1)阶导数,则对闭区间[a,b]上任意一点x。

其中,表示f(x)的n阶导数,等号后的多项式称为函数f(x)在x0处的泰勒展开式,剩余的Rn(x)是泰勒公式的余项,是(x-x0)n的高阶无穷小。

参考资料来源:百度百科-泰勒公式

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式