设矩阵A^k=0矩阵(k为正整数),证明(E-A)^(-1)=E+A+A^2+...+A^(k-1)

 我来答
新科技17
2022-08-27 · TA获得超过5898个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:74.6万
展开全部
证明:因为 A^k = 0
所以 (E-A)(E+A+A^2+...+A^(k-1))
= E+A+A^2+...+A^(k-1)
-A-A^2-...-A^(k-1)-A^k
= E - A^k
= E
所以 E-A 可逆,且 (E-A)^-1 = E+A+A^2+...+A^(k-1)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式