矩阵A的特征值有哪些?
1个回答
展开全部
设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。
扩展资料
判断相似矩阵的必要条件
设有n阶矩阵A和B,若A和B相似(A∽B),则有:
1、A的特征值与B的特征值相同——λ(A)=λ(B),特别地,λ(A)=λ(Λ),Λ为A的对角矩阵;
2、A的特征多项式与B的特征多项式相同——|λE-A|=|λE-B|;
3、A的迹等于B的迹——trA=trB/ ,其中i=1,2,…n(即主对角线上元素的和);
4、A的行列式值等于B的行列式值——|A|=|B|;
5、A的秩等于B的秩——r(A)=r(B)。[1]
因而A与B的特征值是否相同是判断A与B是否相似的根本依据。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询