设为来自总体的简单随机样本,其样本均值为,无偏估计量,试求常数c的值

 我来答
鲸志愿
2022-09-30 · 专注大中学生升学规划服务
鲸志愿
向TA提问
展开全部

X1,X2,…,Xn(n≥2)为来自总体的简单随机样本,总体X服从参数为λ(λ>0)的泊松分布

故:EX1=EX2=…=EXn=λ,DX1=DX2=…=DXn(n≥2)

(n-1)X1^2/求和i=2Xi2

F(1,n-1)

因为总体X服从泊松分布,所以E(X)=λ,即du u1=E(X)=λ

因此有 λ=1/n*(X1+X2+...+Xn)=X拔 (即X的平均数

所以λ的矩估计量为 λ(上面一个尖号)=X拔

由最值原理,如果最值存在,此方程组求得的驻点即为所求的最值点,就可以很到参数的极大似然估计。极大似然估计法一般属于这种情况,所以可以直接按上述步骤求极大似然估计。

扩展资料:

在做实验时,常常是相对于试验结果本身而言,主要还是对结果的某些函数感兴趣。例如,在掷骰子时,我们常常关心的是两颗骰子的点和数,而并不真正关心其实际结果,就是说,我们关心的也许是其点和数为7,而并不关心其实际结果是否是(1,6)或(2,5)或(3,4)或(4,3)或(5,2)或(6,1)。我们关注的这些量,或者更形式的说,这些定义在样本空间上的实值函数,称为随机变量

因为随机变量的值是由试验结果决定的,所以我们可以给随机变量的可能值指定概率。

参考资料来源:百度百科-随机变量

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
彩驰科技
2024-11-22 广告
互联网算法备案平台,专业代理代办,快速响应,高效办理!专业代理代办,快速办理,让您省时省力!专业团队为您提供优质服务,让您的互联网算法备案更顺利!咨询电话:13426378072,13436528688... 点击进入详情页
本回答由彩驰科技提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式