高二数学数列的前n项求和计算 1*1+2*2+3*3+...+n*n(详细的过程)

 我来答
大沈他次苹0B
2022-09-07 · TA获得超过7325个赞
知道大有可为答主
回答量:3059
采纳率:100%
帮助的人:177万
展开全部
因为(n+1)^3-n^3=(n+1-n)[(n+1)^2+n(n+1)+n^2]=3n^2+3n+1
所以3n^2=(n+1)^3-n^3-3n-1
所以3*1^2+3*2^2+……+3n^2
=[(1+1)^3-1^3-3*1-1]+[(2+1)^3-2^3-3*2-1]+……+[(n+1)^3-n^3-3n-1]
=(n+1)^3-1^3-3*(1+2+3+……+n)-1*n
=(n+1)^3-1-3*n(1+n)/2-n
=n(n+1)(2n+1)/2
所以1^2+2^2+……+n^2=n(n+1)(2n+1)/6
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式