设A=(a1,a2,a3),向量组a1,a2线性无关,且-2a1+a2=a3,又B3=a1+a2+a3,?

 我来答
华源网络
2022-10-13 · TA获得超过5587个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:146万
展开全部
因为向量组a1,a2线性无关,且-2a1+a2=a3
所以 r(A) = 2
所以 Ax=0 的基础解系含 3-2=1 个解向量
又由 -2a1+a2=a3 知 (-2,1,-1)^T 是 Ax=0 的基础解系.
由 B=a1+a2+a3 知 (1,1,1)^T 是 Ax=B 的解
所以 Ax=B 的通解为 (1,1,1)^T + c (-2,1,-1)^T
PS. 加点悬赏会快些得到解答,4,设A=(a1,a2,a3),向量组a1,a2线性无关,且-2a1+a2=a3,又B3=a1+a2+a3,
求方程组AX=B的通解.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式