证明不等式 x+y+z=1,求证(x/y+1)+( y/z+1)+(z/x+1)≥3/4
1个回答
展开全部
记a=x/(y+1)+y/(z+1)+z/(x+1);
因为上式是轮换对称式,故有:
a=z/(y+1)+x/(z+1)+y/(x+1);两式相加得:
2a=(x+z)/(y+1)+(x+y)/(z+1)+(y+z)/(x+1)
=(1-y)/(1+y)+(1-z)/(1+z)+(1-x)/(1+x)
=2/(x+1)+2/(y+1)+2/(z+1)-3;
记1/(x+1)+1/(y+1)+1/(z+1)为m;并
应用均值不等式有:((x+1)+(y+1)+(z+1))/3≥3/(1/(x+1)+1/(y+1)+1/(z+1))〔算术平均≥调和平均〕上式即4/3≥3/m,
所以m≥9/4,往上回代,则有2a≥2*9/4-3=3/2,即a≥3/4,原式得证
P.S楼主括号打的有问题
因为上式是轮换对称式,故有:
a=z/(y+1)+x/(z+1)+y/(x+1);两式相加得:
2a=(x+z)/(y+1)+(x+y)/(z+1)+(y+z)/(x+1)
=(1-y)/(1+y)+(1-z)/(1+z)+(1-x)/(1+x)
=2/(x+1)+2/(y+1)+2/(z+1)-3;
记1/(x+1)+1/(y+1)+1/(z+1)为m;并
应用均值不等式有:((x+1)+(y+1)+(z+1))/3≥3/(1/(x+1)+1/(y+1)+1/(z+1))〔算术平均≥调和平均〕上式即4/3≥3/m,
所以m≥9/4,往上回代,则有2a≥2*9/4-3=3/2,即a≥3/4,原式得证
P.S楼主括号打的有问题
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询