什么是拐点,极值点,驻点?

 我来答
与你同在早知道
高粉答主

2022-11-09 · 与你同在早知道早发现
与你同在早知道
采纳数:18 获赞数:16333

向TA提问 私信TA
展开全部

一、定义不同

1、极值点:若f(a)是函数f(x)的极大值或极小值,则a为函数f(x)的极值点,极大值点与极小值点统称为极值点。极值点是函数图像的某段子区间内上极大值或者极小值点的横坐标。极值点出现在函数的驻点(导数为0的点)或不可导点处(导函数不存在,也可以取得极值,此时驻点不存在)。

2、驻点:函数的一阶导数为0地点(驻点也称为稳定点,临界点)。对于多元函数,驻点是所有一阶偏导数都为零的点。

3、拐点:又称反曲点,在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即连续曲线的凹弧与凸弧的分界点)。

二、性质不同

1、在驻点处的单调性可能改变,在拐点处凹凸性可能改变。

2、拐点:使函数凹凸性改变的点。

3、驻点:一阶导数为零。

三、特征不同

1、极值点不一定是驻点。如y=|x|,在x=0点处不可导,故不是驻点,但是极(小)值点。

2、驻点也不一定是极值点。如y=x³,在x=0处导数为0,是驻点,但没有极值,故不是极值点。

3、该曲线图形的函数在拐点有二阶导数,则二阶导数在拐点处异号(由正变负或由负变正)或不存在。

扩展资料:

1、零点,驻点,极值点指的都是函数y=f(x)的一个横坐标x0,而拐点指的是函数y=f(x)图像上的一个点

2、驻点和极值点:可导函数f(x)的极值点必定是它的驻点,但是反过来,函数的驻点却不一定是极值点。例如上面举例的y=x3,x=0是函数f(x)的驻点,但它不是极值点。此外,函数在它的一阶导数不存在时,也可能取得极值,例如y=|x|,在x=0处导数不存在,但极值点是x=0。

3、驻点和极值点与函数的一阶导数有关,拐点与函数的二阶导数和三阶导数有关。

参考资料:百度百科-极值点

参考资料:百度百科-驻点

参考资料:百度百科-拐点

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式