极坐标面积公式怎么推导的?

 我来答
粂野茜音c3
高能答主

2022-12-06 · 致力于成为全知道最会答题的人
知道大有可为答主
回答量:1.1万
采纳率:99%
帮助的人:171万
展开全部
极坐标面积公式=∫2πyds=∫2πrsinθ√(r^2+r'^2)dθ,wheresisarclength。
推导:y=rsinθ;(ds)^2=(dx)^2+(dy)^2=((-rsinθ+r'cosθ)dθ)^2+((rcosθ+r'sinθ)dθ)^2=(r^2+r'^2)(dθ)^2。
极坐标定积分是以R为半径,θ为积分变元,计算曲线面积的积分。
设曲线ρ=R在区间[θ1,θ2]上非负连续,当dθ足够小时,曲线面积近似为直角三角形面积,等于一边长度乘以高,故曲线面积积分变量为1/2R×Rdθ,由此得到曲线周长面积的定积分。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式