
在三角形ABC中,a,b,c分别是∠A,∠B,∠C的对边,且【4sin(B+C/2)】的平方-cos2A=7/2,求∠A的大小
在三角形ABC中,a,b,c分别是∠A,∠B,∠C的对边,且【4sin(B+C/2)】的平方-cos2A=7/2,求∠A的大小...
在三角形ABC中,a,b,c分别是∠A,∠B,∠C的对边,且【4sin(B+C/2)】的平方-cos2A=7/2,求∠A的大小
展开
展开全部
4sin²(B+C)/2-cos2A
=4sin²(π/2-A/2)-cos2A
=4cos²(A/2)-2cos²A+1
=2cosA+2-2cos²A+1=7/2
即2cos²A-2cosA+1/2=0,即cosA=1/2,即A=π/3
=4sin²(π/2-A/2)-cos2A
=4cos²(A/2)-2cos²A+1
=2cosA+2-2cos²A+1=7/2
即2cos²A-2cosA+1/2=0,即cosA=1/2,即A=π/3
参考资料: http://zhidao.baidu.com/question/228428469.html?an=0&si=1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询