设数列a1,a2.....an...中的每一项都不为0.证明:{an}为等差数列的充分必要条件是:对任何n属于N*,都有
1/(a1*a2)+1/(a2*a3)+...1/[an*a(n+1)]=n/[a1*a(n+1)]...
1/(a1*a2)+1/(a2*a3)+...1/[an*a(n+1)]=n/[a1*a(n+1)]
展开
1个回答
展开全部
[]表示下标
充分:
由1/(a1*a2)+1/(a2*a3)+...1/(an*a[n+1])=n/(a1*a[n+1])得
1/(a1*a2)+1/(a2*a3)+...1/[a[n-1]*an]=(n-1)/(a1*an)
相减1/(an*a[n+1])=n/(a1*a[n+1])-(n-1)/(a1*an)
化简后a1=n*an-(n-1)*a[n+1]
则有a1=(n-1)*a[n-1]-(n-2)an
两式相减,化简有(n-1)*(a[n-1]+a[n+1])=(n-1)*(2*an) (n>=2)
即a[n+1]-an=an-a[n-1](n>=2)
等差数列
必要:
an为等差数列,则1/(an*a[n+1])=((a[n+1]-an)/d)/(an*a[n+1])=1/d*(1/an-1/a[n+1])
所以1/(a1*a2)+1/(a2*a3)+...1/[an*a(n+1)]=1/d*(a1-a2)+1/d*(a3-a2)+...+1/d*(1/an-1/a[n+1])=1/d*(1/a1-1/a[n+1])=((a[n+1]-a1)/d)/(a1*a[n+1])=n/(a1*a[n+1])
充分:
由1/(a1*a2)+1/(a2*a3)+...1/(an*a[n+1])=n/(a1*a[n+1])得
1/(a1*a2)+1/(a2*a3)+...1/[a[n-1]*an]=(n-1)/(a1*an)
相减1/(an*a[n+1])=n/(a1*a[n+1])-(n-1)/(a1*an)
化简后a1=n*an-(n-1)*a[n+1]
则有a1=(n-1)*a[n-1]-(n-2)an
两式相减,化简有(n-1)*(a[n-1]+a[n+1])=(n-1)*(2*an) (n>=2)
即a[n+1]-an=an-a[n-1](n>=2)
等差数列
必要:
an为等差数列,则1/(an*a[n+1])=((a[n+1]-an)/d)/(an*a[n+1])=1/d*(1/an-1/a[n+1])
所以1/(a1*a2)+1/(a2*a3)+...1/[an*a(n+1)]=1/d*(a1-a2)+1/d*(a3-a2)+...+1/d*(1/an-1/a[n+1])=1/d*(1/a1-1/a[n+1])=((a[n+1]-a1)/d)/(a1*a[n+1])=n/(a1*a[n+1])
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询